A combination of conventional MR imaging, DWI, and DSC-PWI techniques produces a high sensitivity, specificity, positive predictive value, and negative predictive value for predicting mutations in grade II and III astrocytomas. The strategy of using advanced, semiquantitative MR imaging techniques may provide an important, noninvasive, surrogate marker that should be studied further in larger, prospective trials.
Employing theranostic nanoparticles, which combine both therapeutic and diagnostic capabilities in one dose, has promise to propel the biomedical field toward personalized medicine. Here we investigate the theranostic properties of topological insulator bismuth selenide (Bi2Se3) in in vivo and in vitro system for the first time. We show that Bi2Se3 nanoplates can absorb near-infrared (NIR) laser light and effectively convert laser energy into heat. Such photothermal conversion property may be due to the unique physical properties of topological insulators. Furthermore, localized and irreversible photothermal ablation of tumors in the mouse model is successfully achieved by using Bi2Se3 nanoplates and NIR laser irradiation. In addition, we also demonstrate that Bi2Se3 nanoplates exhibit strong X-ray attenuation and can be utilized for enhanced X-ray computed tomography imaging of tumor tissue in vivo. This study highlights Bi2Se3 nanoplates could serve as a promising platform for cancer diagnosis and therapy.
Using MMS high‐resolution measurements, we present the first observation of fast electron jet (Ve ~2,000 km/s) at a dipolarization front (DF) in the magnetotail plasma sheet. This jet, with scale comparable to the DF thickness (~ 0.9 di), is primarily in the tangential plane to the DF current sheet and mainly undergoes the E × B drift motion; it contributes significantly to the current system at the DF, including a localized ring‐current that can modify the DF topology. Associated with this fast jet, we observed a persistent normal electric field, strong lower hybrid drift waves, and strong energy conversion at the DF. Such strong energy conversion is primarily attributed to the electron‐jet‐driven current (E ⋅ je ≈ 2 E ⋅ ji), rather than the ion current suggested in previous studies.
Whistler waves that can produce anomalous resistivity by affecting electrons' motion have been suggested as one of the mechanisms responsible for magnetic reconnection in the electron diffusion region (EDR). Such type of waves, however, has rarely been observed inside the EDR so far. In this study, we report such an observation by Magnetospheric Multiscale (MMS) mission. We find large‐amplitude whistler waves propagating away from the X line with a very small wave‐normal angle. These waves are probably generated by the perpendicular temperature anisotropy of the ~300 eV electrons inside the EDR, according to our analysis of dispersion relation and cyclotron resonance condition; they significantly affect the electron‐scale dynamics of magnetic reconnection and thus support previous simulations.
We report in situ observations of an electron jet generated by secondary reconnection within the outflow region of primary reconnection in the terrestrial magnetotail by the Magnetospheric Multiscale (MMS) mission. The MMS spacecraft first passed through the primary X-line and then crossed the electron jet in the outflow of primary reconnection. There are a series of small-scale flux ropes in the secondary reconnection region. Decoupling from the magnetic field for both ions and electrons, an intense out-of-plane current, unambiguous Hall currents, and a Hall electromagnetic field appear in the electron jet. Strong electron dissipation (
), a nonzero electric field in the electron frame (
), and electron crescent-like shaped distributions are detected in the center of the electron jet, implying that MMS spacecraft were likely passing through the electron diffusion region. The significant electron dissipation indicates that the electrons can be accelerated in the electron jet and the electron jet may be another important electron acceleration channel along with the electron diffusion region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.