The molecular basis of cell signal-regulated alternative splicing at the 3′ splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3′ splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3′ splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3′ splice site usage.
Splicing of precursor messenger RNA (pre-mRNA) removes the intervening sequences (introns) and joins the expressed regions (exons) in the nucleus, before an intron-containing eukaryotic mRNA transcript can be exported and translated into proteins in the cytoplasm. While some sequences are always included or excluded (constitutive splicing), others can be selectively used (alternative splicing) in this process. Particularly by alternative splicing, up to tens of thousands of variant transcripts can be produced from a single gene, which contributes greatly to the proteomic diversity for such complex cellular functions as 'wiring' neurons in the nervous system. Disruption of this process leads to aberrant splicing, which accounts for the defects of up to 50% of mutations that cause certain human genetic diseases. In this review, we describe the different mechanisms of aberrant splicing that cause or have been associated with neurological diseases.
Background Bisphenol A is widely used in the manufacture of polycarbonate plastics and has caused increasing concern over its potential adverse impacts on spermatogenesis. However, the effect of bisphenol A on spermiogenesis is yet to be explored. Objectives To evaluate whether bisphenol A has adverse effects on DNA integrity and protamination of spermatogenic cell. Materials and methods Newborn male mice were subcutaneously injected with bisphenol A (0.1, 5 mg/kg body weight, n = 15) or coin oil (control group, n = 20) daily from post‐natal day 1 until 35. At post‐natal day 70, epididymis caudal spermatozoa and testes were collected. Sperm count, sperm motility, and sperm morphology were analyzed. The sperm chromatin structure assay was performed to examine the sperm DNA fragmentation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method was used to assess apoptosis of spermatogenic cells. The ultrastructural features of testicular sections were examined under a transmission electron microscope. Western blot and RT‐PCR were used to detect the expression levels of transition protein (Tnp) 1 and Tnp2, protamine (Prm) 1 and Prm2 protein, and mRNA in mice testes. Results Bisphenol A significantly reduced sperm counts, impaired sperm motility, and increased the percentage of malformed spermatozoa. Poor sperm chromatin integrity and increased TUNEL‐positive spermatogenic cells were also observed in mice exposed to bisphenol A. Ultrastructural analysis of testes showed that bisphenol A exposure caused incomplete chromatin condensation, retention of residual cytoplasm, and abnormal acrosome formation. In addition, the relative expression levels of Tnp2 and Prm2 in mice testes decreased significantly in bisphenol A groups. Discussion and conclusion Our findings identified that neonatal bisphenol A exposure may negatively contribute to the sperm quality in adult mice. Mechanistically, we showed that bisphenol A reduced sperm chromatin integrity along with increased DNA damage, which may be due to poor protamination of spermatozoa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.