We have investigated the oxidation of hydrogen-terminated Si(111) and (100) surfaces stored in air, using synchrotron radiation photoemission spectroscopy and infrared absorption spectroscopy in the multiple internal reflection geometry. We demonstrate that water present in air is predominantly involved in the oxidation of surface Si–H bonds, and that native oxide starts to grow when the surface hydrogen coverage is decreased. In order to explain the latter phenomenon, we propose a kinetic model of oxidation which considers the manner in which native oxide formation preferentially occurs on those portions of the surface where the Si–H bonds are oxidized. We suggest that the oxidation of surface Si–H bonds, the rate of which is strongly dependent on the humidity of air, is a rate-limiting step in the native oxide formation on hydrogen-terminated Si surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.