Bone tissue has a strong ability to repair itself. When treated properly, most fractures will heal well. However, some fractures are difficult to heal. When a fracture does not heal, it is called nonunion. Approximately, 5% of all fracture patients have difficulty healing. Because of the continuous movement of the fracture site, bone nonunion is usually accompanied by pain, which greatly reduces the quality of life of patients. Bone marrow mesenchymal stem cells (BMSCs) play an important role in the process of nonunion. Circular RNAs (circRNAs) are a unique kind of noncoding RNA and represent the latest research hotspot in the RNA field. At present, no studies have reported a role of circRNAs in the development of nonunion. After isolation of BMSCs from patients with nonunion, the expression of circRNAs in these cells was detected by using a circRNA microarray. Alkaline phosphatase and Alizarin red staining were used to detect the regulation of osteogenic differentiation of BMSCs by hsa_circ_0074834. The target gene of hsa_circ_0074834 was detected by RNA pull-down and double-luciferase reporter assay. The ability of hsa_circ_0074834 to regulate the osteogenesis of BMSCs in vivo was tested by heterotopic osteogenesis and single cortical bone defect experiments. The results showed that the expression of hsa_circ_0074834 in BMSCs from patients with nonunion was decreased. Hsa_circ_0074834 acts as a ceRNA to regulate the expression of ZEB1 and VEGF through microRNA-942-5p. Hsa_circ_0074834 can promote osteogenic differentiation of BMSCs and the repair of bone defects. These results suggest that circRNAs may be a key target for the treatment of nonunion.
Pain, physical dysfunction, and mental disorders caused by bone nonunion bring great burden to patients. Bone mesenchymal stem cells (BMSCs) isolated from bone nonunion patients with poor proliferation and osteogenic ability are compared with that from normal bone-healing patients. Long noncoding RNAs (lncRNAs) are a class of RNAs that are more than 200 nucleotides in length, lack an open-reading frame encoding a protein, and have little or no protein-coding function, and could regulate gene expression, which is involved in the regulation of important life activities, such as growth, development, aging, and death at epigenetic, transcriptional, and post-transcriptional levels. In this study, we intended to investigate the difference of lncRNA expression between patients with nonunion and normal fracture healing. Our result found that lncRNA ENST00000563492 was downregulated in bone nonunion tissues. LncRNA ENST00000563492 promotes osteogenic differentiation of BMSCs through upregulating the expression of CDH11. On the other hand, LncRNA ENST0000563492 could improve the osteogenesis–angiogenesis coupling process through enhancing the expression of VEGF during osteogenic differentiation of BMSCs. LncRNA ENST00000563492 functions as a ceRNA for miR-205-5p that was targeting CDH11 and VEGF. LncRNA ENST00000563492 could promote the osteogenesis of BMSCs in vivo. Our result indicated that lncRNA ENST00000563492 may be a new target for bone nonunion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.