Escherichia coli KO11 and Klebsiella oxytoca P2 recombinants fermented sucrose to ethanol. In minimal medium with 2% or 12% added sucrose KO11 produced 75% and 41%, respectively, of the maximum theoretical yield (0.54g ethanol/g sucrose). In Luria-Bertani (LB) broth with up to 8% sucrose, KO11 presented a 94-96% yield and with 12% sucrose, KO11 presented about 69% yield (44.5g ethanol/L). P2 presented 55% of the theoretical maximum yield in minimal medium supplemented with 2% sucrose and 47% of the maximum in 12% sucrose. In LB broth with 2 or 4% sucrose, P2 presented 94-95% of the theoretical maximum yield, which fell to 73% with 8% added sucrose (31.4g ethanol/L) and 58% with 12% sucrose (37.5 g/L). Volumetric productivity in LB broth containing 2% sucrose was 0.41 g/L/h for KO11 and 1.1 g/L/h for P2, while in LB broth with 12% added sucrose, productivity was 0.96 g/L/h (KO11) and 1.4 g/L/h (P2). During fermentation of sugar cane juice by E. coli KO11 and K. oxytoca P2 produced 39.4 g/L and 42.1 g/L ethanol when supplemented with 0.5% yeast extract, micronutrients and thiamine. In sugar cane juice supplemented with LB broth ingredients, KO11 ethanol fermentation was inhibited with production of only 23.0 g ethanol/L, while P2 produced 44.2 g/ L. Ethanol production by KO11 and P2, respectively, in sugarcane juice was a) 25.3 and 30.2 g/L with 0.2% ammonium sulfate, b) 24.9 and 31.6 g/L with ammonium sulfate and micronutrients, c) 25.6 and 37.5 g/L with ammonium sulfate, micronutrients and thiamine. During molasses fermentation E. coli KO11 presented low ethanol production and high lactic acid production. K. oxytoca P2 produced 25 g ethanol/L in molasses diluted 10-fold in water, with or without addition of 0.5% yeast extract, and 27.8 g/L with addition of LB broth ingredients after 96h. P2 produced 24.5, 26.9, and 28.0 g ethanol/L in molasses diluted 10-fold in vinasse, vinasse with 0.5% added yeast extract and with LB broth ingredients, respectively.
Microbial colonies were replicated on YNB® agar plates overlaid with soft agar containing the glucoseoxidase/peroxidase (BIOTROL®) system. The pink color developed around the colonies was the result of the reaction of the glucose generated by the extracellular hydrolysis of lactose by β-galactosidase, indicating secretion of this enzyme. This method proved to be very convenient for testing hundreds of colonies grown on agar plates for β-galactosidase secretion by microbial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.