This paper presents a design method of a Model Predictive Control (MPC) with low computational cost for a practical Adaptive Cruise Control (ACC) running on an embedded microprocessor. Generally, a problem with previous ACC is slow following response in traffic jams, in which stop-and-go driving is required. To improve the control performance, it is important to design a controller considering vehicle characteristics which significantly changes depending on driving conditions. In this paper, we attempt to solve the problem by using MPC that can explicitly handle constraints imposed on, e.g., actuator or acceleration response. Furthermore, we focus on decreasing the computational load for the practical use of MPC by using low-order prediction model. From these results, we developed ACC with high responsiveness and less discomfort even for traffic jam scene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.