Kaposi's sarcoma-associated herpesvirus (KSHV) is a carcinogenic virus that latently infects B cells and causes malignant tumors in immunocompromised patients. KSHV utilizes two viral E3 ubiquitin ligases, K3 and K5, in KSHV-infected cells to mediate the polyubiquitination-dependent down-regulation of several host membrane proteins involved in the immune system. Although K3 and K5 are members of the same family and have similar structural topologies, K3 and K5 have different substrate specificities. Hence, K5 may have a different substrate recognition mode than K3; however, the molecular basis of substrate recognition remains unclear. Here, we investigated the reason why human CD8α, which is known not to be a substrate for both K3 and K5, is not recognized by them, to obtain an understanding for molecular basis of substrate specificity. CD8α forms a disulfide-linked homodimer under experimental conditions to evaluate the viral ligase-mediated down-regulation. It is known that two interchain disulfide linkages in the stalk region between each CD8α monomer (Cys164–Cys164 and Cys181–Cys181) mediate homodimerization. When the interchain disulfide linkage of Cys181–Cys181 was eliminated, CD8α was down-regulated by K5 with a functional RING variant (RINGv) domain via polyubiquitination at the cytoplasmic tail. Aspartic acid, located at the stalk/transmembrane interface of CD8α, was essential for K5-mediated down-regulation of the CD8α mutant without a Cys181–Cys181 linkage. These results suggest that disulfide linkage near the stalk/transmembrane interface critically inhibits substrate targeting by K5. Accessibility to the extracellular juxtamembrane stalk region of membrane proteins may be important for substrate recognition by the viral ubiquitin ligase K5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.