VEGF (vascular endothelial growth factor) regulates neovascularization through binding to its receptor KDR (kinase insert domain-containing receptor; VEGF receptor-2). We recently identified a catalytically inactive PLA(2) (phospholipase A(2)) homologue (KDR-bp) in the venom of eastern cottonmouth (Agkistrodon piscivorus piscivorus) as a third KDR-binding protein, in addition to VEGF(165) and tissue inhibitor of metalloproteinase-3. KDR-bp binds to the extracellular domain of KDR with a K(d) of 10(-8) M, resulting in specific blockade of endothelial cell growth induced by VEGF(165). Inactive PLA(2) homologues are widely distributed in the venoms of Viperidae snakes and are known to act as myotoxins. In the present study, we demonstrated that KDR-binding ability is a common characteristic for inactive PLA(2) homologues in snake venom, but not for active PLA(2)s such as neurotoxic and platelet aggregation-modulating PLA(2)s. To understand better the KDR and KDR-bp interaction, we resolved the binding region of KDR-bp using eight synthetic peptides designed based on the structure of KDR-bp. A synthetic peptide based on the structure of the C-terminal loop region of KDR-bp showed high affinity for KDR, but other peptides did not, suggesting that the C-terminal loop region of KDR-bp is involved in the interaction with KDR. The results of the present study provide insight into the binding of inactive PLA(2) homologues to KDR, and may also assist in the design of novel anti-KDR molecules for anti-angiogenic therapy.
Many anticoagulant proteins have been found from snake venoms. Recently, (L)-amino acid oxidase (LAO) from the venom of Gloydius blomhoffi, M-LAO, was reported to inhibit coagulation factor IX; however, the mechanism of its anticoagulant activity is still unclear. Here, we re-evaluated the anticoagulant activity of M-LAO. We first purified M-LAO from the venom of G. blomhoffi, and examined the effect of LAO inhibitors and the hydrogen peroxide scavenger, catalase, on the anticoagulant activity of M-LAO. We found that the isolated M-LAO fraction prolongs the APTT, PT and fibrinogen clotting time and cleaves the Aalpha-chain of fibrinogen. LAO inhibitors or catalase did not inhibit these effects. Detailed analysis revealed that the M-LAO fraction contained a small amount of 39-kDa metalloproteinase. The prolongation of clotting time and degradation of fibrinogen were inhibited by a metalloproteinase inhibitor. Therefore, we concluded that the anticoagulant activity of the M-LAO fraction was caused by the 39-kDa metalloproteinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.