Background: CD44 is cleaved, releasing a C-terminal intracellular domain with unknown function in the cytoplasm. Results: Overexpression of this intracellular domain negatively affects the function of full-length CD44. Conclusion: Determining the mechanism of interference highlighted the interaction of CD44 with ankyrin-3 adaptor proteins. Significance: Released CD44 domains amplify the loss of function resulting from the initial cleavage.
Objective Small hyaluronan (HA) oligosaccharides serve as competitive receptor antagonists to displace HA from the cell surface and induce cell signaling events. In articular chondrocytes this cell signaling is mediated by the HA receptor CD44 and induces stimulation of genes involved in matrix degradation such as matrix metalloproteinases as well as matrix repair genes including collagen type II, aggrecan and HA synthase-2. The objective of this study was to determine changes in the expression and function of aggrecanases after disruption of chondrocyte CD44-HA interactions. Methods Bovine articular chondrocytes or bovine cartilage tissue were pre-treated with a variety of inhibitors of major signaling pathways prior to the addition of HA oligosaccharides. Changes in aggrecanase were monitored by real time reverse transcriptase-polymerase chain reaction and western blot analysis of ADAMTS4, ADAMTS5 and aggrecan proteolytic fragments. To test the interactions between ADAMTS4 and MT4-MMP, protein lysates purified from stimulated chondrocytes were subjected to co-immunoprecipitation. Results Disruption of chondrocyte CD44-HA interactions with HA oligosaccharides induced the transcription of ADAMTS4 and ADAMTS5 in time- and dose-dependent manner. The association of GPI-anchored MT4-MMP with ADAMTS4 was also induced in articular chondrocytes by HA oligosaccharides. Inhibition of the NF-κB pathway blocked HA oligosaccharides-mediated stimulation of aggrecanases. Conclusions Disruptive changes in chondrocyte-matrix interactions by HA oligosaccharides induce matrix degradation and elevate aggrecanases via the activation of the NF-κB signaling pathway.
CD44 shedding occurs in osteoarthritic chondrocytes. Previous work of others has suggested that the hyaluronidase isoform HYAL2 has the capacity to bind to CD44, a binding that may itself induce CD44 cleavage. Experiments were developed to elucidate whether chondrocyte HYAL2: (1) was exposed on the extracellular plasma membrane of chondrocytes, (2) bound to CD44, (3) underwent shedding together with CD44 and lastly, (4) exhibited hyaluronidase activity within a near-neutral pH range. Enhancing CD44 shedding by IL-1β resulted in a proportional increase in HYAL2 released from human and bovine chondrocytes into the medium. CD44 knockdown by siRNA also resulted in increased accumulation of HYAL2 in the media of chondrocytes. By hyaluronan zymography only activity at pH 3.7 was observed and this activity was reduced by pre-treatment of chondrocytes with trypsin. CD44 and HYAL2 were found to co-immunoprecipitate, and to co-localize within intracellular vesicles and at the plasma membrane. Degradation of hyaluronan was visualized by agarose gel electrophoresis. With this approach, hyaluronidase activity could be observed at pH 4.8 under assay conditions in which CD44 and HYAL2 binding remained intact; additionally, weak hyaluronidase activity could be observed at pH 6.8 under these conditions. This study suggests that CD44 and HYAL2 are bound at the surface of chondrocytes. The release of HYAL2 when CD44 is shed could provide a mechanism for weak hyaluronidase activity to occur within the more distant extracellular matrix of cartilage.
Age-related reductions in the frequency and absolute number of early B lineage precursors in the bone marrow of aged mice have been reported. Reversal of B-cell lineage senescence has not been achieved. Age-related impairment of the B-cell lineage is caused by the decreasing functionality of hematopoietic and B lineage precursors, and reduced efficacy of bone marrow stromal cells that constitute the bone marrow microenvironment. To induce rejuvenation of aged B cells, we injected whole bone marrow from young donors to irradiated aged recipients through the tibia and analyzed B-cell development and immune responsiveness. In aged mice, we found significant reductions in the frequencies and absolute numbers of pro-B cells (B220 + CD43 + CD24 + BP-1 À and B220 + CD43 + CD24 int BP-1 + ) and pre-B cells (B220 + CD43 + CD24 high BP-1 + and B220 + CD43 À IgM À IgD À ). Intra-bone marrow bone marrow transplantation (IBM-BMT) of young marrow cells including both hematopoietic stem cells and bone marrow stromal cells reversed the reduction of pro-B cells and pre-B cells. In the periphery, the frequency and absolute number of marginal zone-B cell were not significantly different between young, old and IBM-BMT group. The frequency of follicular-B cells in the IBM-BMT group was significantly increased compared to old group. The frequency of B1a B cells in the peritoneal cavity was significantly decreased in the IBM-BMT group. Antibody production against T-independent antigens was not different among the young, the aged and IBM-BMT groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.