Various properties of semiconductor nanoparticles, including photoluminescence and catalytic activity, make these materials attractive for a range of applications. As nanoparticles readily coagulate and so lose their size-dependent properties, shape-persistent three-dimensional stabilizers that enfold nanoparticles have been exploited. However, such wrapping approaches also make the nanoparticles insensitive to external stimuli, and so may limit their application. The chaperonin proteins GroEL (from Escherichia coli) and T.th ('T.th cpn', from Thermus thermophilus HB8) encapsulate denatured proteins inside a cylindrical cavity; after refolding, the encapsulated proteins are released by the action of ATP inducing a conformational change of the cavity. Here we report that GroEL and T.th cpn can also enfold CdS semiconductor nanoparticles, giving them high thermal and chemical stability in aqueous media. Analogous to the biological function of the chaperonins, the nanoparticles can be readily released from the protein cavities by the action of ATP. We expect that integration of such biological mechanisms into materials science will open a door to conceptually new bioresponsive devices.
Biocompatibility of PLLA and stereocomplexed PLA nanofibers was evaluated by subcutaneous implantation in rats for 4-12 weeks. Characterization of the nanofibers was performed by GPC, SEM, wide-angle X-ray diffraction, and optical microscopy of hematoxylin-eosin stained ultrathin sections of explanted nanofibers. Stereocomplexed PLA nanofiber showed slower degradation than PLLA nanofiber and thus retained their shape after prolonged implantation. Furthermore, stereocomplexed PLA nanofiber caused milder inflammatory reaction than PLLA nanofiber. These results offer the potential use of PLLA and stereocomplexed PLA nanofibers as a biomaterial for short-term and long-term tissue regeneration, respectively. Stereocomplexed PLA nanofiber after in vitro degradation showed smaller degree of swelling than PLLA nanofiber. Taking the results of in vivo degradation together with in vitro degradation into consideration, bioabsorption mechanism of the in vivo degradation of the nanofibers is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.