Porphyrins and related families of molecules are important organic modules as has been reflected in the award of the Nobel Prizes in Chemistry in 1915, 1930, 1961, 1962, 1965, and 1988 for work on porphyrin-related biological functionalities. The porphyrin core can be synthetically modified by introduction of various functional groups and other elements, allowing creation of numerous types of porphyrin derivatives. This feature makes porphyrins extremely useful molecules especially in combination with their other interesting photonic, electronic and magnetic properties, which in turn is reflected in their diverse signal input-output functionalities based on interactions with other molecules and external stimuli. Therefore, porphyrins and related macrocycles play a preeminent role in sensing applications involving chromophores. In this review, we discuss recent developments in porphyrin-based sensing applications in conjunction with the new advanced concept of nanoarchitectonics, which creates functional nanostructures based on a profound understanding of mutual interactions between the individual nanostructures and their arbitrary arrangements. Following a brief explanation of the basics of porphyrin chemistry and physics, recent examples in the corresponding fields are discussed according to a classification based on physical modes of detection including optical detection (absorption/photoluminescence spectroscopy and energy and electron transfer processes), other spectral modes (circular dichroism, plasmon and nuclear magnetic resonance), electronic and electrochemical modes, and other sensing modes.
Gradual and reversible tuning of the torsion angle of an amphiphilic chiral binaphthyl, from -90° to -80°, was achieved by application of a mechanical force to its molecular monolayer at the air-water interface. This 2D interface was an ideal location for mechanochemistry for molecular tuning and its experimental and theoretical analysis, since this lowered dimension enables high orientation of molecules and large variation in the area. A small mechanical energy (<1 kcal mol(-1) ) was applied to the monolayer, causing a large variation (>50 %) in the area of the monolayer and modification of binaphthyl conformation. Single-molecule simulations revealed that mechanical energy was converted proportionally to torsional energy. Molecular dynamics simulations of the monolayer indicated that the global average torsion angle of a monolayer was gradually shifted.
In this work, the growth of fertilized Japanese medaka (Oryzias latipes) eggs was monitored in vivo at the molecular level using near-infrared (NIR) spectroscopy and NIR imaging. NIR spectra were recorded noninvasively for three major parts of a fertilized medaka egg, the embryonic body, the oil droplets, and the yolk, from the first day after fertilization to the day before hatching. Principal component analysis (PCA) revealed that water, protein, and lipid contents in the egg yolk and oil droplets changed significantly just before hatching. The ratio of the characteristic peaks due to proteins and lipids in the second derivative spectra suggested that the relative concentration of proteins to lipids was constant in the egg yolk, while it dramatically increased just before hatching in the oil droplets. Furthermore, linear discriminant analysis (LDA) predicted the hatching possibility on the next day with 100% and 99.3% accuracy for yolk and oil droplets data, respectively. Two types of NIR images were developed in situ using the band intensities of the lipids and proteins in the second derivative spectra. The egg’s protein and lipid content was successfully visualized noninvasively. This technique should enable noninvasive quality testing of fertilized eggs in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.