Efficiencies of the incorporation of various nonnatural amino acids carrying aromatic side groups
into streptavidin were examined. The aromatic amino acids were linked to a mixed dinucleotide, pdCpA, and
the resulting aminoacyl pdCpAs were coupled with tRNAcccg(−CA) to afford chemically aminoacylated
tRNAcccg's. Mutant streptavidin mRNA containing a CGGG 4 base codon at the Tyr83 site was prepared
and added to an Escherichia coli in vitro translation system with the aminoacyl tRNAcccg. The expression of
the full-length mutant streptavidins was confirmed by a Western blot analysis, and their biotin binding activity
was examined by a dot blot analysis. The Western blot analysis indicated that the efficiencies of the incorporation
were higher for aromatic groups with straight configurations than those with widely expanded or bend
configurations. The incorporation efficiencies were also examined in a rabbit reticulocyte lysate. In the latter
system, the efficiencies were markedly improved for nonnatural amino acids with large side groups such as
pyrene and anthraquinone.
We designed and synthesized new, fluorescent, non-natural amino acids that emit fluorescence of wavelengths longer than 500 nm and are accepted by an Escherichia coli cell-free translation system. We synthesized p-aminophenylalanine derivatives linked with BODIPY fluorophores at the p-amino group and introduced them into streptavidin using the four-base codon CGGG in a cell-free translation system. Practically, the incorporation efficiency was high enough for BODIPYFL, BODIPY558 and BODIPY576. Next, we incorporated BODIPYFL-aminophenylalanine and BODIPY558-aminophenylalanine into different positions of calmodulin as a donor and acceptor pair for fluorescence resonance energy transfer (FRET) using two four-base codons. Fluorescence spectra and polarization measurements revealed that substantial FRET changes upon the binding of calmodulin-binding peptide occurred for the double-labeled calmodulins containing BODIPY558 at the N terminus and BODIPYFL at the Gly40, Phe99 and Leu112 positions. These results demonstrate the usefulness of FRET based on the position-specific double incorporation of fluorescent amino acids for analyzing conformational changes of proteins.
In order to alter the fluorescence properties of green fluorescent protein (GFP), aromatic non-natural amino acids were introduced into the Tyr66 position of GFP in a cell-free translation system using a four-base codon method. Two non-natural mutants (O-methyltyrosine and p-aminophenylalanine mutants) out of 18 mutants showed blue-shifted but weak fluorescence compared with wild-type GFP. Then the aminophenylalanine mutant was sequence optimized by introducing random mutations around the Tyr66 site. For this purpose, a method for random mutation of non-natural proteins in a cell-free system was developed. Three aminophenylalanine mutants with Y145F, Y145L and Y145 M mutations were obtained, which exhibited increased fluorescence by 1.5-, 3- and 4-fold, respectively. These results indicate that random mutation around non-natural amino acids is useful strategy in order to improve protein functions that are reduced by non-natural amino acid incorporation. The method described here will be applicable to other non-natural mutant proteins in a high-throughput manner.
Fragment-based drug discovery (FBDD) has enjoyed increasing popularity in recent years. We introduce SITE (single-injection thermal extinction), a novel thermodynamic methodology that selects high-quality hits early in FBDD. SITE is a fast calorimetric competitive assay suitable for automation that captures the essence of isothermal titration calorimetry but using significantly fewer resources. We describe the principles of SITE and identify a novel family of fragment inhibitors of the enzyme ketosteroid isomerase displaying high values of enthalpic efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.