Electrodeposition of inorganic compound thin films in the presence of certain organic molecules results in self‐assembly of various hybrid thin films with new properties. Examples of new discoveries by the authors are reviewed, taking cathodic formation of a ZnO/dye hybrid as the leading example. Hybridization of eosinY leads to the formation of highly oriented porous crystalline ZnO as the consequence of dye loading. The hybrid formation is a highly complicated process involving complex chemistry of many molecular and ionic constituents. However, electrochemical analyses of the relevant phenomena indicate the possibility of reaching a comprehensive understanding of the mechanism, giving us the chance to further develop them into industrial technologies. The porous crystals are ideal for photoelectrodes in dye‐sensitized solar cells. As the process also permits the use of non‐heat‐resistant substrates, the technology can be applied for the development of colorful and light‐weight plastic solar cells.
Abstract. The stable isotopic compositions of nitrate, including the 17 O anomalies ( 17 O), were determined twice in 1 yr (June and August 2007) in the oligotrophic water column of Lake Mashu, Japan. These data were then used to quantify the geochemical dynamics of nitrate in the lake, by using the deposition rate of the atmospheric nitrate onto the entire catchment area of the lake. The total amount of nitrate in the lake water decreased from 4.2 to 2.1 Mmol during the period between the observations, while the average 17 O values remained uniform at +2.5‰. The 17 O values corresponded to an small and uniform mixing ratio of atmospheric nitrate to total nitrate of 9.7 ± 0.8%. These results indicate that 0.52 ± 0.34 Mmol of the remineralized nitrate was fed into the water column through nitrification, while 2.6 ± 0.4 Mmol of nitrate was simultaneously removed from the water column by assimilation, during the period between the observations. The lake water dissolved nitrate was characterized by rapid removal through assimilation during summer until it was almost completely removed from the euphotic layer, as well as continuous feeding into the lake through nitrification (3.2 ± 0.3 Mmol a −1 ) and deposition (0.35 ± 0.2 Mmol a −1 ), regardless of the seasons. The 15 N-depleted nitrogen isotopic compositions of nitrate were as low as −6.5‰ in June, which also indicates that in-lake nitrification is the major source of nitrate in the lake and suggests that there is low potential for denitrification in and around the lake. Atmospheric nitrate deposited into the lake will be assimilated quickly, having a mean residence time of 1.2 ± 0.1 yr. In addition, more than 90% of the assimilated nitrate will be remineralized to nitrate and re-assimilated via active nitrogen cycling in the lake.
Abstract. The stable isotopic compositions of nitrate in precipitation (wet deposition) and groundwater (spring, lake, and stream water) were determined for the island of Rishiri, Japan, so as to use the 17 O anomalies ( 17 O) to trace the fate of atmospheric nitrate that had deposited onto the island ecosystem, which is a representative background forest ecosystem for eastern Asia. The deposited nitrate had large 17 O anomalies with 17 O values ranging from +20.8‰ to +34.5‰ (n = 32) with +26.2‰ being the annual average. The maximum 17 O value of +34.5‰, obtained for precipitation on the 23rd to 24th of February 2007, was an extraordinarily large value among values for all samples of precipitation in Rishiri. Most nitrate in the sample might have been produced via NO 3 radical in a highly polluted air mass that had been supplied from megacities on the eastern coast of the Asian continent. On the other hand, nitrate in groundwater had small 17 O values ranging from +0.9‰ to 3.2‰ (n = 19), which corresponds to an mixing ratio of atmospheric nitrate to total nitrate of (7.4±2.6)%. Comparing the inflow and outflow of atmospheric nitrate in groundwater within the island, we estimated that the direct drainage accounts for (8.8±4.6)% of atmospheric nitrate that has deposited on the island and that the residual portion has undergone biological processing before being exported from the forest ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.