The interactions between fibroblast growth factors (FGF) and their receptors have important roles in mediating mesenchymal-epithelial cell interactions during embryogenesis. In particular, Fgf10 is predicted to function as a regulator of brain, lung and limb development on the basis of its spatiotemporal expression pattern in the developing embryo. To define the role of Fgf10, we generated Fgf10-deficient mice. Fgf10-/- mice died at birth due to the lack of lung development. Trachea was formed, but subsequent pulmonary branching morphogenesis was disrupted. In addition, mutant mice had complete truncation of the fore- and hindlimbs. In Fgf10-/- embryos, limb bud formation was initiated but outgrowth of the limb buds did not occur; however, formation of the clavicles was not affected. Analysis of the expression of marker genes in the mutant limb buds indicated that the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) did not form. Thus, we show here that Fgf10 serves as an essential regulator of lung and limb formation.
We identified a human multiprotein complex (WINAC) that directly interacts with the vitamin D receptor (VDR) through the Williams syndrome transcription factor (WSTF). WINAC has ATP-dependent chromatin-remodeling activity and contains both SWI/SNF components and DNA replication-related factors. The latter might explain a WINAC requirement for normal S phase progression. WINAC mediates the recruitment of unliganded VDR to VDR target sites in promoters, while subsequent binding of coregulators requires ligand binding. This recruitment order exemplifies that an interaction of a sequence-specific regulator with a chromatin-remodeling complex can organize nucleosomal arrays at specific local sites in order to make promoters accessible for coregulators. Furthermore, overexpression of WSTF could restore the impaired recruitment of VDR to vitamin D regulated promoters in fibroblasts from Williams syndrome patients. This suggests that WINAC dysfunction contributes to Williams syndrome, which could therefore be considered, at least in part, a chromatin-remodeling factor disease.
Human height is a representative phenotype to elucidate genetic architecture. However, the majority of large studies have been performed in European population. To investigate the rare and low-frequency variants associated with height, we construct a reference panel (N = 3,541) for genotype imputation by integrating the whole-genome sequence data from 1,037 Japanese with that of the 1000 Genomes Project, and perform a genome-wide association study in 191,787 Japanese. We report 573 height-associated variants, including 22 rare and 42 low-frequency variants. These 64 variants explain 1.7% of the phenotypic variance. Furthermore, a gene-based analysis identifies two genes with multiple height-increasing rare and low-frequency nonsynonymous variants (SLC27A3 and CYP26B1; PSKAT-O < 2.5 × 10−6). Our analysis shows a general tendency of the effect sizes of rare variants towards increasing height, which is contrary to findings among Europeans, suggesting that height-associated rare variants are under different selection pressure in Japanese and European populations.
BackgroundOral condition and number of teeth were investigated by questionnaire in the Japan Multi-Institutional Collaborative Cohort (J-MICC Study). The aim of the present study was to assess the validity of the tooth number measure by comparing the self-reported number of teeth with the number of teeth determined at clinical dental examination.MethodsA self-administered questionnaire and dental examination were performed by 1275 participants of a company medical examination who requested dental check-up and 377 subjects of the J-MICC study. The validity of the tooth number measure was assessed by comparing the self-reported number of teeth with that determined at clinical examination. Spearman’s rank correlation coefficient was calculated to quantitatively evaluate the validity.ResultsIn males, the mean clinically-examined and self-reported numbers of teeth were 26.5 and 24.8 teeth, respectively. In females, the mean clinically-examined and self-reported numbers of teeth were 26.4 and 25.5 teeth, respectively. There was a tendency toward underestimation of the number of natural teeth by self-reporting. A significant correlation was observed between the clinically-examined and self-reported numbers of teeth in total (ρ = 0.69) and both males (ρ = 0.70) and females (ρ = 0.67).ConclusionsThe self-reported oral health variables were valid and reflected clinical status. Further revision of the question on the remaining tooth in the questionnaire improves the validity of self-reported number of teeth.
BackgroundMost diseases are thought to arise from interactions between environmental factors and the host genotype. To detect gene–environment interactions in the development of lifestyle-related diseases, and especially cancer, the Japan Multi-institutional Collaborative Cohort (J-MICC) Study was launched in 2005.MethodsWe initiated a cross-sectional study to examine associations of genotypes with lifestyle and clinical factors, as assessed by questionnaires and medical examinations. The 4519 subjects were selected from among participants in the J-MICC Study in 10 areas throughout Japan. In total, 108 polymorphisms were chosen and genotyped using the Invader assay.ResultsThe study group comprised 2124 men and 2395 women with a mean age of 55.8 ± 8.9 years (range, 35–69 years) at baseline. Among the 108 polymorphisms examined, 4 were not polymorphic in our study population. Among the remaining 104 polymorphisms, most variations were common (minor allele frequency ≥0.05 for 96 polymorphisms). The allele frequencies in this population were comparable with those in the HapMap-JPT data set for 45 Japanese from Tokyo. Only 5 of 88 polymorphisms showed allele-frequency differences greater than 0.1. Of the 108 polymorphisms, 32 showed a highly significant difference in minor allele frequency among the study areas (P < 0.001).ConclusionsThis comprehensive data collection on lifestyle and clinical factors will be useful for elucidating gene–environment interactions. In addition, it is likely to be an informative reference tool, as free access to genotype data for a large Japanese population is not readily available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.