BSTRACTAlthough extracellular matrix (ECM) stiffness is an important aspect of the extracellular microenvironment and is known to direct the lineage specification of stem cells and affect cancer progression, the molecular mechanisms that sense ECM stiffness have not yet been elucidated. In this study, we show that the proline-rich linker (PRL) region of vinculin and the PRL-region-binding protein vinexin are involved in sensing the stiffness of ECM substrates. A rigid substrate increases the level of cytoskeleton-associated vinculin, and the fraction of vinculin stably localizing at focal adhesions (FAs) is larger on rigid ECM than on soft ECM. Mutations in the PRL region or the depletion of vinexin expression impair these responses to ECM stiffness. Furthermore, vinexin depletion impairs the stiffness-dependent regulation of cell migration. These results suggest that the interaction of the PRL region of vinculin with vinexin a plays a crucial role in sensing ECM stiffness and in mechanotransduction.
Diabetes, trauma, and insufficient intraoperative irrigation of the surgical wound were independent and direct risk factors for surgical site infection following spine surgery. To prevent surgical site infection in spine surgery, it is important to control the perioperative serum glucose levels in patients with diabetes, avoid any delay of surgery in patients with trauma, and decrease intraoperative contamination by irrigating > 2000 ml/hour of saline in all patients.
Shortly after birth, mammalian cardiomyocytes irreversibly exit from the cell cycle and become terminally differentiated. The cellular mechanisms responsible for the cessation of cell division and terminal differentiation of cardiomyocytes soon after birth have intrigued developmental biologists as well as cardiovascular physicians, but the genetic cues for the irreversible exit from the cell cycle soon after birth remain largely unknown. We examined whether and if so how oxidative stress to mammalian hearts during fetal-neonatal transition produces changes in the proliferative activity and terminal differentiation of cardiomyocytes. Scavenging of reactive oxygen species (ROS) during fetal-neonatal transition, especially after birth, resulted in an increase in the proliferative activity and a decrease in the ratio of binucleated cardiomyocytes. Exposure to ROS in cultured cardiomyocytes increased the activity of p38 MAPK and the expression of connexin 43 (Cx43). Not only knockdown of Cx43 using siRNA but also the inhibition of p38 MAPK activity resulted in a significant decrease in the production of ROS in cardiomyocytes, suggesting that the signaling pathway ROS-p38 MAPK-Cx43 (especially, Cx43 at mitochondria, mtCx43) constituted a closed regulatory system with positive feedback. In addition, continuous scavenging of ROS or suppression of p38 MAPK activity for 4 days after birth resulted in a significant decrease in the expression of mtCx43 and in the number of binucleated cardiomyocytes. This study demonstrated that the ROS-induced formation of a positive-feedback loop ROS-p38 MAPK-mtCx43 for the sustained activation of p38 MAPK soon after birth possibly contributes to the loss of cell division and binucleation in mammalian cardiomyocytes.
Gap junctions are intercellular channels that connect the cytoplasm of adjacent cell. Gap junctional intercellular communication has long been postulated to contribute to the maintenance of tissue homeostasis. Recent studies, however, have demonstrated that connexins, gap junction proteins, are involved in the regulation of a variety of cellular functions other than intercellular communication. Although, in neonatal rat ventricular myocytes, connexin-40, -43, and -45 are all expressed, connexin43 (Cx43) is the primary subtype. In this study, we examined whether and if so how the knockdown of a gap junction protein Cx43 with siRNA produced changes in the proliferative activity of neonatal cardiomyocytes. Cx43-knockdown resulted in a significant increase in the proliferation of cardiomyocytes. To clarify the mechanisms behind this increase, we investigated whether the activity of mitogen-activated protein kinases (MAPKs) changed on knockdown of Cx43. The knockdown decreased the expression of phosphorylated p38 (p-p38) MAPK. In addition, treatment of cardiomyocytes with a p38 MAPK inhibitor significantly increased the proliferative activity. Cultures were then co-treated with an inhibitor of p38 MAPK and fibroblast growth factor-1 (FGF1), since Cx43-knockdown significantly increased cytosolic FGF1 expression as well. The co-treatment enhanced the proliferation of cardiomyocytes compared with the treatment with the p38 MAPK inhibitor alone. Taken together, the present study demonstrated that Cx43-knockdown produced a significant increase in the proliferation of neonatal cardiomyocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.