(+/-)-(Z)-2-(Aminomethyl)-1-phenylcyclopropane-N,N-diethylcarbo xamide (milnacipran, 1), a clinically useful antidepressant, and its derivatives were prepared by an improved method and were evaluated as NMDA receptor antagonists. Of these, milnacipran (1), its N-methyl and N,N-dimethyl derivatives, 7 and 8, respectively, and its homologue 12 at the aminomethyl moiety had binding affinity for the receptor in vitro (IC50: 1, 6.3 +/- 0.3 microM; 7, 13 +/- 2.1 microM; 8, 88 +/- 1.4 microM; 12, 10 +/- 1.2 microM). These also protected mice from NMDA-induced lethality. These compounds would be important as anovel prototype for designing potent NMDA-receptor antagonists because of their characteristic structure, which clearly differentiated them from known competitive and noncompetitive antagonists to the receptor.
The proteins responsible for radiation sensitive disorders, NBS1, kinase ataxia-telangiectasia-(A-T)-mutated (ATM) and MRE11, interact through the C-terminus of NBS1 in response to the generation of DNA double-strand breaks (DSBs) and are all implicated in checkpoint regulation and DSB repair, such as homologous recombination (HR). We measured the ability of several NBS1 mutant clones and A-T cells to regulate HR repair using the DR-GFP or SCneo systems. ATM deficiency did not reduce the HR repair frequency of an induced DSB, and it was confirmed by findings that HR frequencies are only slightly affected by deletion of ATM-binding site at the extreme Cterminus of NBS1. In contrast, The HR-regulating ability is dramatically reduced by deletion of the MRE11-binding domain at the C-terminus of NBS1 and markedly inhibited by mutations in the FHA/BRCT domains at the N-terminus. This impaired capability in HR is consistent with a failure to observe MRE11 foci formation. Furthermore, normal HR using sister chromatid was completely inhibited by the absence of FHA/BRCT domains. These results suggested that the N-and C-terminal domains of NBS1 are the major regulatory domains for HR pathways, very likely through the recruitment and retention of the MRE11 nuclease to DSB sites in an ATMindependent fashion.
Fermentation Technology, Hiroshima University, 1-4-1 Higas h i-H iros h i ma 739, Japan
84322-5305, USAThe Preudomnas syringae cyclic lipodepsipeptide syringomycin inhibits the growth of Saccharomyces cemwisi4e. A novel yeast gene, SYR2, was found to complement two syringomycin-resistant S. cemwisiae mutants. SYR2 was cloned, sequenced, and shown to encode a 349 amino acid protein located in the endoplasmic reticulum. SYR2 was identical to SUR2, which is involved in survival during nutritional starvation. Gene disruption or overexpression of SYR2 did not affect cell viability or ergosterol levels, but did influence cellular phospholipid levels. The findings suggest that phospholipids are important for the growth inhibitory action of syringomycin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.