Chandra observations of large samples of galaxy clusters detected in X-rays by ROSAT provide a new, robust determination of the cluster mass functions at low and high redshifts. Statistical and systematic errors are now sufficiently small, and the redshift leverage sufficiently large for the mass function evolution to be used as a useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 37 clusters with z = 0.55 derived from 400 deg 2 ROSAT serendipitous survey and 49 brightest z ≈ 0.05 clusters detected in the All-Sky Survey. Evolution of the mass function between these redshifts requires Ω Λ > 0 with a ∼ 5σ significance, and constrains the dark energy equationof-state parameter to w 0 = −1.14 ± 0.21, assuming a constant w and a flat universe. Cluster information also significantly improves constraints when combined with other methods. Fitting our cluster data jointly with the latest supernovae, Wilkinson Microwave Anisotropy Probe, and baryonic acoustic oscillation measurements, we obtain w 0 = −0.991 ± 0.045 (stat) ±0.039 (sys), a factor of 1.5 reduction in statistical uncertainties, and nearly a factor of 2 improvement in systematics compared with constraints that can be obtained without clusters. The joint analysis of these four data sets puts a conservative upper limit on the masses of light neutrinos m ν < 0.33 eV at 95% CL. We also present updated measurements of Ω M h and σ 8 from the low-redshift cluster mass function.
The cooling of gas in the centers of dark matter halos is expected to lead to a more concentrated dark matter distribution. The response of dark matter to the condensation of baryons is usually calculated using the model of adiabatic contraction, which assumes spherical symmetry and circular orbits. In contrast, halos in the hierarchical structure formation scenarios grow via multiple violent mergers and accretion along filaments, and particle orbits in the halos are highly eccentric. We study the effects of the cooling of gas in the inner regions of halos using highresolution cosmological simulations that include gas dynamics, radiative cooling, and star formation. We find that the dissipation of gas indeed increases the density of dark matter and steepens its radial profile in the inner regions of halos compared to the case without cooling. For the first time, we test the adiabatic contraction model in cosmological simulations and find that the standard model systematically overpredicts the increase of dark matter density in the inner 5% of the virial radius. We show that the model can be improved by a simple modification of the assumed invariant from M (r)r to M (r)r, where r andr are the current and orbit-averaged particle positions. This modification approximately accounts for orbital eccentricities of particles and reproduces simulation profiles to within 10%-20%. We present analytical fitting functions that accurately describe the transformation of the dark matter profile in the modified model and can be used for interpretation of observations.
We present detailed comparisons of the intracluster medium (ICM) in cosmological Eulerian cluster simulations with deep Chandra observations of nearby relaxed clusters. To assess the impact of galaxy formation, we compare two sets of simulations, one performed in the nonradiative regime and another with radiative cooling and several physical processes critical to various aspects of galaxy formation: star formation, metal enrichment, and stellar feedback. We show that the observed ICM properties outside cluster cores are well reproduced in the simulations that include cooling and star formation, while the nonradiative simulations predict an overall shape of the ICM profiles inconsistent with observations. In particular, we find that the ICM entropy in our runs with cooling is enhanced to the observed levels at radii as large as half of the virial radius. We also find that outside cluster cores entropy scaling with the mean ICM temperature in both simulations and Chandra observations is consistent with being self-similar within current error bars. We find that the pressure profiles of simulated clusters are also close to self-similar and exhibit little cluster-to-cluster scatter. We provide analytic fitting formulae for the pressure profiles of the simulated and observed clusters. The X-ray observable mass relations for our simulated sample agree with the Chandra measurements to %10%Y20% in normalization. We show that this systematic difference could be caused by the subsonic gas motions, unaccounted for in X-ray hydrostatic mass estimates. The much improved agreement of simulations and observations in the ICM profiles and scaling relations is encouraging, and the existence of tight relations of X-ray observables, such as Y X , and total cluster mass and the simple redshift evolution of these relations hold promise for the use of clusters as cosmological probes. However, the disagreement between the predicted and observed fractions of cluster baryons in stars remains a major puzzle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.