Astigmatid mites depend on bioactive glandular secretions, pheromones, and defensive agents to mediate intra- and interspecies interactions. Aliphatic formates, such as (Z,Z)-8,11-heptadecadienyl formate (8,11-F17) and (Z)-8-heptadecenyl formate (8-F17), are rarely encountered natural products that are abundant inSancassaniasp. Sasagawa (Acari: Acaridae) mite secretions. Linoleic acid and oleic acid are predicted as key intermediates in the synthesis of the closely related aliphatic formates. To gain insight in this biosynthetic pathway, acarid mite feeding experiments were conducted using13C-labeled precursors to precisely track incorporation. Analyses using13C NMR spectroscopy demonstrated that the13C-labeling pattern of the precursors was detectable on formates in exocrine secretions and likewise on fatty acids in total lipid pools. Curiously, the results demonstrated that the formates were biosynthesized without the dehomologation of corresponding fatty acids. Careful examination of the mass spectra from labeling experiments revealed that the carbonyl carbon of the formates is originally derived from the C-1 position of the fatty acids. Consistent with a Baeyer–Villiger oxidation reaction, labeling studies support the insertion of an oxygen atom between the carbonyl group and carbon chain. Empirical data support the existence of a Baeyer–Villiger monooxygenase responsible for the catalyzation of the Baeyer–Villiger oxidation. The predicted existence of a Baeyer–Villiger monooxygenase capable of converting aliphatic aldehydes to formates represents an exciting opportunity to expand the enzymatic toolbox available for controlled biochemical synthesis.
We identified two aliphatic formates, (
Z
,
Z
)-8,11-heptadecadienyl formate and (
Z
)-8-heptadecenyl formate in the opisthonotal gland secretions of an unidentified acarid species, namely
Sancassania
sp. Sasagawa. Both compounds were isolated using silica gel column chromatography and the structures were elucidated by
1
H-NMR and GC/FT-IR. Further information on the double bond positions was obtained by GC-MS analysis of the corresponding dimethyl disulfide derivatives. Based on the estimated structures of the two formates and using linoleic and oleic acids as the respective starting materials, a simple four-step synthesis was achieved via Barton decarboxylation as the key step. The aliphatic formates identified in acarids thus far are neryl formate ((
Z
)-3,7-dimethylocta-2,6-dienyl formate) and lardolure (1,3,5,7-tetramethyldecyl formate), and both have been reported to have pheromone functions. The biological function of the two formates isolated in this study is currently being investigated. Although we can speculate that the two compounds were biosynthesized from linoleic and oleic acid, there is a possibility that the synthetic processes featured a novel chain shortening and formic acid esterification mechanism.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.