Waterborne human enteric viruses, such as noroviruses and adenoviruses, are excreted in the feces of infected individuals and transmitted via the fecal-oral route including contaminated food and water. Since viruses are normally present at low concentrations in aquatic environments, they should be concentrated into smaller volumes prior to downstream molecular biological applications, such as quantitative polymerase chain reaction (qPCR). This review describes recent progress made in the development of concentration and detection methods of human enteric viruses in water, and discusses their applications for providing a better understanding of the prevalence of the viruses in various types of water worldwide. Maximum concentrations of human enteric viruses in water that have been reported in previous studies are summarized to assess viral abundances in aquatic environments. Some descriptions are also available on recent applications of sequencing analyses used to determine the genetic diversity of viral genomes in water samples, including those of novel viruses. Furthermore, the importance and significance of utilizing appropriate process controls during viral analyses are discussed, and three types of process controls are considered: whole process controls, molecular process controls, and (reverse transcription (RT)-)qPCR controls. Although no standards have been established for acceptable values of virus recovery and/or extraction-(RT-)qPCR efficiency, use of at least one of these appropriate control types is highly recommended for more accurate interpretation of observed data.
bHisto-blood group antigens (HBGAs) have been suggested to be receptors or coreceptors for human noroviruses (HuNoVs) expressed on the intestinal epithelium. We isolated an enteric bacterium strain (SENG-6), closely related to Enterobacter cloacae, bearing HBGA-like substances from a fecal sample of a healthy individual by using a biopanning technique with anti-HBGA antibodies. The binding capacities of four genotypes of norovirus-like particles (NoVLPs) to Enterobacter sp. SENG-6 cells were confirmed by enzyme-linked immunosorbent assay (ELISA). Transmission electron microscopy demonstrated that NoVLPs bound mainly to extracellular polymeric substances (EPS) of Enterobacter sp. SENG-6, where the HBGA-like substances were localized. EPS that contained HBGA-like substances extracted from Enterobacter sp. SENG-6 was shown by enzyme-linked immunosorbent assay (ELISA) to be capable of binding to NoVLPs of a GI.1 wild-type strain (8fIIa) and a GII.6 strain that can recognize A antigen but not to an NoVLP GI.1 mutant strain (W375A) that loses the ability to bind to A antigen. Enzymatic cleavage of terminal N-acetyl-galactosamine residues in the bacterial EPS weakened bacterial EPS binding to the GI.1 wild-type strain (8fIIa). These results indicate that A-like substances in the bacterial EPS play a key role in binding to NoVLPs. Since the specific binding of HuNoVs to HBGA-positive enteric bacteria is likely to affect the transmission and infection processes of HuNoVs in their hosts and in the environment, further studies of human enteric bacteria and their binding capacity to HuNoVs will provide a new scientific platform for understanding interactions between two types of microbes that were previously regarded as biologically unrelated.
Wastewater surveillance for pathogens using reverse transcription-polymerase chain reaction (RT-PCR) is an effective and resource-efficient tool for gathering additional community-level public health information, including the incidence of coronavirus disease-19 (COVID-19). Surveillance of SARS-CoV-2 in wastewater can provide an early warning signal of COVID-19 infections in a community. The capacity of the world's environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is increasing rapidly. However, there are no standardized protocols or harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can cause false-positive and false-negative errors in the surveillance of SARS-CoV-2, culminating in recommended strategies that can be implemented to identify and mitigate these errors. Recommendations include stringent QA/QC measures, representative sampling approaches, effective virus concentration and efficient RNA extraction, amplification inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularly when the incidence of SARS-CoV-2 in wastewater is low. Corrective and confirmatory actions must be in place for inconclusive results or results diverging from current trends (e.g., initial onset or reemergence of COVID-19 in a community). It is also prudent to perform interlaboratory comparisons to ensure results' reliability and interpretability for prospective and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization and detection for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance continues to be demonstrated during this global crisis. In the future, wastewater should also play an important role in the surveillance of a range of other communicable diseases.
2020) Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered, Critical Reviews in
Half a century ago scientists attempted the detection of poliovirus in water. Since then other enteric viruses responsible for gastroenteritis and hepatitis have replaced enteroviruses as the main target for detection. However, most viral outbreaks are restricted to norovirus and hepatitis A virus, making them the main targets in water. The inclusion of virus analysis in regulatory standards for viruses in water samples must overcome several shortcomings such as the technical difficulties and high costs of virus monitoring, the lack of harmonised and standardised assays and the challenge posed by the ever-changing nature of viruses. However, new tools are nowadays available for the study and direct surveillance of viral pathogens in water that may contribute to fulfil these requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.