resonances have been realized at visible and infrared wavelengths thanks to the mature lithographic processing of suitable materials, [4] such as silicon (Si), [5] gallium phosphide (GaP), [6] and titanium dioxide (TiO 2 ). [7] It would be desirable to extend the operation of these materials to the ultraviolet, but their small direct band gap energies (≲3 eV) lead to significant absorption losses in the ultraviolet. Wide band gap materials, such as niobium pentoxide [8] and hafnium oxide, [9] offer transparency in the ultraviolet but at the cost of a moderate refractive index (n ≈ 2.1−2.3). Diamond has been theoretically suggested as a potential material, [10,11] but comes with significant nanofabrication challenges. [12] The scarcity of available high-index materials with wide band gap energies calls for the identification of new materials which can advance the rich optical properties of Mie resonances observed in the visible to the ultraviolet. Concurrent advances in first-principles methodology and computing power have recently made it possible to design and discover new materials via high-throughput computations. [13][14][15][16][17] The approach has been successfully applied in several domains, including photovoltaics, transparent conductors, and photocatalysis. [18][19][20] However, to the best of our knowledge, computational discovery of new high-index materials remains largely unexplored. Relevant previous work in this direction has been limited to the static response regime [21,22] reflecting the fact that the major materials databases so far has focused on ground state properties.Here we use high-throughput linear response density functional theory (DFT) to screen an initial set of 2743 elementary and binary materials with the aim to identify isotropic highindex, low loss, and broad band optical materials. For the most promising materials, the computed frequency-dependent complex refractive indices are used as input for Mie scattering calculations to evaluate their optical performance. In addition to the already known high-index materials we identify several new compounds. In particular, boron phosphide (BP) offers a refractive index above three with very low absorption losses in a spectral range spanning from the infrared to the ultraviolet. We then prepare BP nanoparticles and show, by means of darkfield optical measurements and electron energy-loss spectroscopy, that they support size-dependent Mie resonances in the visible and ultraviolet. Finally, we demonstrate a laser reshaping Controlling ultraviolet light at the nanoscale using optical Mie resonances holds great promise for a diverse set of applications, such as lithography, sterilization, and biospectroscopy. Access to the ultraviolet requires materials with a high refractive index and wide band gap energy. Here, the authors systematically search for such materials by computing the frequency-dependent optical permittivity of 338 binary semiconductors and insulators from first principles, and evaluate their scattering properties using Mie theor...
as a low-loss nanoantenna. [1,2] Differently from plasmonic nanoantennas, they exhibit magnetic-type resonances as well as electric-type ones. Existence of magnetic and electric multipole resonances provides a large degree of freedom for tailoring light-matter interactions. [3][4][5][6][7][8][9] Up to now, the most studied dielectric material for a nanoantenna is Si because of the high refractive index (n > 3.5) in the whole visible to near IR (NIR) range and the low extinction coefficient in the red to NIR range (Figure 1). [10,11] However, the extinction coefficient of Si increases at shorter wavelength, and below ≈600 nm, the quality factor (Q-factor) of the resonance degrades and the albedo, that is the ratio of scattering to extinction efficiencies, decreases. This limits the performance of a nanoantenna in the short wavelength range. An alternative material of a nanoantenna operating in a short wavelength range is GaP. It has a moderately high refractive index (n > 3) and a small extinction coefficient at >470 nm (Figure 1a) because of the much larger indirect band gap 2.26 eV (≈550 nm) [12][13][14][15][16][17][18] than that of Si (1.12 eV). For example, the extinction coefficient of GaP at 514 nm is 0.004, which is an order of magnitude smaller than that of Si (0.06). However, despite the expected high performance, research on GaP nanoantennas is very scarce. [13,16,19] For example, even the highest symmetry nanoantenna, i.e., a spherical GaP nanoparticle, has not been developed and the antenna performance has not been studied.In this work, we develop colloidal solution of spherical GaP NP nanoantennas operating below 600 nm. We produce spherical GaP NPs by the combination of mechanical milling and a pulsed laser melting in solution process. In general, the Q-factor of Mie resonances of a spherical NP nanoantenna is higher than that of irregular-shape NP nanoantennas. We first study the effect of the shape on the Mie resonances by single particle scattering spectroscopy and electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). We then discuss scattering spectra of single GaP NPs with different sizes and demonstrate the existence of distinctive Mie resonances below 600 nm when the diameter is above ≈200 nm. Finally, we show Purcell enhancement of fluorescence of dye molecules by a GaP nanoantenna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.