Sputtering of noble metals, such as Au, Ag, Pd, and Pt, onto room-temperature ionic liquids (RTILs) enabled the formation of monoparticle films composed of spherical noble metal nanoparticles on the liquid surface only when the RTILs used contained hydroxyl-functionalized cations as a component. Sputter deposition of these metals under the same conditions simply produced well-dispersed metal particles without the formation of any films on the solution surface when pure RTILs with non-functionalized cations were employed. Anionic species, even those containing a hydroxyl group, did not significantly affect the formation of the particle film on the RTIL surface or dispersion of particles in the solution. The size of Au particles could be controlled by varying the sputtering condition regardless of the two-dimensional particle density, which was determined by the composition of RTILs used. An Au monoparticle film on the RTIL surface was easily transferred onto various solid substrates via the horizontal liftoff method without large aggregation even when the substrate surface was highly curved.
The indium sputter deposition into ionic liquids containing noble metal nanoparticles produces core–shell-structured metal@In2O3 with high thermal and electrochemical stability.
A novel strategy to prepare a bimetallic Au-Pt particle film was developed through sequential sputter deposition of Au and Pt on a room temperature ionic liquid (RTIL). Au sputter deposition onto an RTIL containing hydroxyl-functionalized cations produced a monolayer of Au particles 4.2 nm in size on the liquid surface. Subsequent Pt sputtering onto the original Au particle monolayer floating on the RTIL enabled decoration of individual Au particles with Pt metals, resulting in the formation of a bimetallic Au-Pt particle monolayer with a Pt-enriched particle surface. The particle size slightly increased to 4.8 nm with Pt deposition for 120 min. The shell layer of a bimetallic particle was composed of Au-Pt alloy, the composition of which was tunable by controlling the Pt sputter deposition time. The electrochemical surface area (ECSA) was determined by cyclic voltammetry of bimetallic Au-Pt particle monolayers transferred onto HOPG electrodes by a horizontal liftoff method. The Pt surface coverage, determined by ECSAs of Au and Pt, increased from 0 to 56 mol % with elapse of the Pt sputter deposition time up to 120 min. Thus-obtained Au-Pt particle films exhibited electrocatalytic activity for methanol oxidation reaction (MOR) superior to the activities of pure Au or Pt particles. Volcano-type dependence was observed between the MOR activity and Pt surface coverage on the particles. Maximum activity was obtained for Au-Pt particles with a Pt coverage of 49 mol %, being ca. 120 times higher than that of pure Pt particles. This method enables direct decoration of metal particles with different noble metal atoms, providing a novel strategy to develop highly efficient multinary particle catalysts.
Oxidation of molten In-Sn alloys was carried out in ionic liquids by heat treatment with vigorous stirring, resulting in the formation of indium tin oxide (ITO) nanocrystals. The ITO nanocrystals exhibited a plasmon peak, the peak wavelength of which was blue-shifted with an increase in the Sn fraction in ITO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.