Currently, several of the high performance processors used in a PC cluster have a DVS (Dynamic Voltage Scaling) architecture that can dynamically scale processor voltage and frequency. Adaptive scheduling of the voltage and frequency enables us to reduce power dissipation without a performance slowdown during communication and memory access. In this paper, we propose a method of profiledbased power-performance optimization by DVS scheduling in a high-performance PC cluster. We divide the program execution into several regions and select the best gear for power efficiency. Selecting the best gear is not straightforward since the overhead of DVS transition is not free. We propose an optimization algorithm to select a gear using the execution and power profile by taking the transition overhead into account. We have built and designed a power-profiling system, PowerWatch. With this system we examined the effectiveness of our optimization algorithm on two types of power-scalable clusters (Crusoe and Turion). According to the results of benchmark tests, we achieved almost 40% reduction in terms of EDP (energy-delay product) without performance impact (less than 5%) compared to results using the standard clock frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.