We recommend a minimally traumatic extraction technique, removal of any bone edges, and mucosal wound closure as standard procedures in patients receiving bisphosphonates. We find no evidence supporting the efficacy of a pre-extraction short-term drug holiday from oral bisphosphonates in reducing the risk of MRONJ.
To elucidate the mechanisms of antinociception mediated by the dopaminergic descending pathway in the spinal cord, we investigated the actions of dopamine (DA) on substantia gelatinosa (SG) neurons by in vivo whole-cell patch-clamp methods. In the voltage-clamp mode (V(H)=-70mV), the application of DA induced outward currents in about 70% of SG neurons tested. DA-induced outward current was observed in the presence of either Na(+) channel blocker, tetrodotoxin (TTX) or a non-NMDA receptor antagonist, CNQX, and was inhibited by either GDP-β-S in the pipette solution or by perfusion of a non-selective K(+) channel blocker, Ba(2+). The DA-induced outward currents were mimicked by a selective D2-like receptor agonist, quinpirole and attenuated by a selective D2-like receptor antagonist, sulpiride, indicating that the DA-induced outward current is mediated by G-protein-activated K(+) channels through D2-like receptors. DA significantly suppressed the frequency and amplitude of glutamatergic spontaneous excitatory postsynaptic currents (EPSCs). DA also significantly decreased the frequency of miniature EPSCs in the presence of TTX. These results suggest that DA has both presynaptic and postsynaptic inhibitory actions on synaptic transmission in SG neurons. We showed that DA produced direct inhibitory effects in SG neurons to both noxious and innocuous stimuli to the skin. Furthermore, electrical stimulation of dopaminergic diencephalic spinal neurons (A11), which project to the spinal cord, induced outward current and suppressed the frequency and amplitude of EPSCs. We conclude that the dopaminergic descending pathway has an antinociceptive effect via D2-like receptors on SG neurons in the spinal cord.
The GABA/glycine-mediated inhibitory activity in the substantia gelatinosa (SG) of the spinal cord is critical in the control of nociceptive transmission. We examined whether and how SG inhibitory activity might be regulated by neuronal nicotinic receptors (nAChRs). Patch-clamp recordings were performed in SG neurons of spinal slice preparations from adult rats. We provided electrophysiological evidence that inhibitory presynaptic terminals in the SG expressed nAChRs and their activation resulted in large increases in the frequency of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) in over 90% SG neurons tested. The enhancement of inhibitory activity was mediated by increases in the release of GABA/glycine, and direct Ca(2+) entry through SG presynaptic nAChRs appeared to be involved. Miniature IPSC frequency could be enhanced by the nAChR agonists nicotine or cytisine. Nicotine could still elicit large increases in mIPSC frequency in the presence of the alpha4beta2 nAChR antagonist dihydro-beta-erythroidine (5 microM) and the alpha7 nAChR-selective antagonist methyllycaconitine (40 nM). However, nicotine did not produce a significant enhancement of mIPSC frequency in the presence of the broad spectrum nAChR antagonist mecamylamine (5 microM). Nicotinic agonist-evoked whole-cell currents from SG neurons and the antagonist profiles also indicated the presence of a subtype of nAChRs, which were different from the major central nervous system nAChR subtypes, i.e. alpha4beta2* or alpha7 nAChRs. Together, our results suggest that a subtype of nAChR, possibly alpha3beta4* nAChR or a new nAChR type, is highly expressed at the inhibitory presynaptic terminals in SG of adult rats and play a role in the control of inhibitory activity in SG.
Squamous cell carcinoma (SCC) is the main histological type of oral cancer. Its growth rate and incidence of metastasis to regional lymph nodes is influenced by various factors, including hypoxic conditions. We have previously reported that transcutaneous CO2 induces mitochondrial apoptosis and decreases lung metastasis by reoxygenating sarcoma cells. However, previous studies have not determined the sequential mechanism by which transcutaneous CO2 suppresses growth of epithelial tumors, including SCCs. Moreover, there is no report that transcutaneous CO2 suppresses lymphogenous metastasis using human cell lines xenografts. In this study, we examined the effects of transcutaneous CO2 on cancer apoptosis and lymphogenous metastasis using human SCC xenografts. Our results showed that transcutaneous CO2 affects expressions of PGC-1α and TFAM and protein levels of cleavage products of caspase-3, caspase-9 and PARP, which relatives mitochondrial apoptosis. They also showed that transcutaneous CO2 significantly inhibits SCC tumor growth and affects expressions of HIF-1α, VEGF, MMP-2 and MMP-9, which play essential roles in tumor angiogenesis, invasion and metastasis. In conclusion, transcutaneous CO2 suppressed tumor growth, increased mitochondrial apoptosis and decreased the number of lymph node metastasis in human SCC by decreasing intra-tumoral hypoxia and suppressing metastatic potential with no observable effect in vivo. Our findings indicate that transcutaneous CO2 could be a novel therapeutic tool for treating human SCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.