Abstract-In industries, how to improve forecasting accuracy such as sales, shipping is an important issue. There are many researches made on this. In this paper, a hybrid method is introduced and plural methods are compared. Focusing that the equation of exponential smoothing method(ESM) is equivalent to (1,1) order ARMA model equation, new method of estimation of smoothing constant in exponential smoothing method is proposed before by us which satisfies minimum variance of forecasting error. Generally, smoothing constant is selected arbitrarily. But in this paper, we utilize above stated theoretical solution. Firstly, we make estimation of ARMA model parameter and then estimate smoothing constants. Thus theoretical solution is derived in a simple way and it may be utilized in various fields. Furthermore, combining the trend removing method with this method, we aim to improve forecasting accuracy. An approach to this method is executed in the following method. Trend removing by the combination of linear and 2 nd order non-linear function and 3 rd order non-linear function is executed to the data of Operating equipment and supplies for three cases (An injection device and a puncture device, A sterilized hypodermic needle and A sterilized syringe). The weights for these functions are set 0.5 for two patterns at first and then varied by 0.01 increment for three patterns and optimal weights are searched. Genetic Algorithm is utilized to search the optimal weight for the weighting parameters of linear and non-linear function. For the comparison, monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non-monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful for the time series that has various trend characteristics and has rather strong seasonal trend. The effectiveness of this method should be examined in various cases.
How to allocate goods in shop shelves makes great influence to sales amount. Searching best fit allocation of goods to shelves is a kind of combinatorial problem. This becomes a problem of integer programming and utilizing genetic algorithm may be an effective method. Reviewing past researches, there are few researches made on this. Formerly, we have presented a paper concerning optimization in allocating goods to shop shelves utilizing genetic algorithm. In those papers, the problem that goods were not allowed to allocate in multiple shelves and the problem that goods were allowed to allocate in multiple shelves were pursued. In this paper, we examine the problem that allows goods to be allocated in multiple shelves and introduce the concept of sales profits and sales probabilities. Optimization in allocating goods to shop shelves is investigated. Expansion of shelf is executed. Utilizing genetic algorithm, optimum solution is pursued and verified by a numerical example. Various patterns of problems must be examined hereafter.
Sales forecasting is a starting point of supply chain management, and its accuracy influences business management significantly. In industries, how to improve forecasting accuracy such as sales, shipping is an important issue. In this paper, a hybrid method is introduced and plural methods are compared. Focusing that the equation of exponential smoothing method (ESM) is equivalent to (1,1) order ARMA model equation, a new method of estimation of smoothing constant in exponential smoothing method is proposed before by Takeyasu et.al. which satisfies minimum variance of forecasting error. Firstly, we make estimation of ARMA model parameter and then estimate smoothing constants. In this paper, combining the trend removing method with this method, we aim to improve forecasting accuracy. Trend removing by the combination of linear and 2nd order non-linear function and 3rd order nonlinear function is carried out to the manufacturer's data of sanitary materials.The new method shows that it is useful for the time series that has various trend characteristics and has rather strong seasonal trend. The effectiveness of this method should be examined in various cases.
High School teachers in Japan are sending very busy days on their daily works including teaching, support for the club activities and deskwork. Among them, they share a lot of time for managing the club actives of students compared with other countries. In that area, professionals can make instruction much better than teachers for the special sports like Judo and Kendo (Japanese fencing) etc. School Social Worker can coordinate the professionals out of school and can help teachers by decreasing their burden on that area. There are few related papers concerning the support of club activities by utilizing the professionals outside. In this paper, a questionnaire investigation is executed to the four High Schools at Iwate Prefecture in Japan in order to clarify their current condition and their consciousness, and to seek the possibility of utilizing school social worker for their support. Fundamental statistical analysis, Factor Analysis and Multi Correspondence Analysis are performed. Some interesting and instructive results were obtained.
Abstract:Correct sales forecasting is inevitable in industries. In industries, how to improve forecasting accuracy such as sales, shipping is an important issue. There are many researches made on this. In this paper, we propose a new method to improve forecasting accuracy and confirm them by the numerical example. Focusing that the equation of ESM (exponential smoothing method) is equivalent to (1,1) order ARMA model equation, a new method of estimation of smoothing constant in exponential smoothing method is proposed before by us which satisfies minimum variance of forecasting error. Generally, smoothing constant is selected arbitrarily. But in this paper, we utilize above stated theoretical solution. Firstly, we make estimation of ARMA model parameter and then estimate smoothing constants. Thus theoretical solution is derived in a simple way and it may be utilized in various fields. Combining the trend removing method with this method, we aim to improve forecasting accuracy. Furthermore, "a day of the week index" is newly introduced for the daily data and the forecasting is executed to the manufacturer's data of sanitary materials. We have obtained good result. The effectiveness of this method should be examined in various cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.