Pathogenic variants in SYNGAP1 are one of the most common genetic causes of nonsyndromic intellectual disability (ID) and are considered a risk for autism spectrum disorder (ASD). SYNGAP1 encodes a synaptic GTPase activating protein that modulates the intrinsic GTPase activity of several small G-proteins and is implicated in regulating the composition of the postsynaptic density. By targeting the deletion of exons encoding the calcium/lipid binding (C2) and GTPase activating protein (GAP) domains, we generated a novel rat model to study SYNGAP related pathophysiology. We find that rats heterozygous for the C2/GAP domain deletion (Syngap+/Δ-GAP) exhibit reduced exploration and fear extinction, altered social behaviour, and spontaneous seizures, while homozygous mutants die within days after birth. This new rat model reveals that the enzymatic domains of SYNGAP are essential for normal brain function and provide an important new model system in the study of both ID/ASD and epilepsy.
Background Fragile X syndrome (FXS) is a common single gene cause of intellectual disability and autism spectrum disorder. Cognitive inflexibility is one of the hallmarks of FXS with affected individuals showing extreme difficulty adapting to novel or complex situations. To explore the neural correlates of this cognitive inflexibility, we used a rat model of FXS (Fmr1−/y). Methods We recorded from the CA1 in Fmr1−/y and WT littermates over six 10-min exploration sessions in a novel environment—three sessions per day (ITI 10 min). Our recordings yielded 288 and 246 putative pyramidal cells from 7 WT and 7 Fmr1−/y rats, respectively. Results On the first day of exploration of a novel environment, the firing rate and spatial tuning of CA1 pyramidal neurons was similar between wild-type (WT) and Fmr1−/y rats. However, while CA1 pyramidal neurons from WT rats showed experience-dependent changes in firing and spatial tuning between the first and second day of exposure to the environment, these changes were decreased or absent in CA1 neurons of Fmr1−/y rats. These findings were consistent with increased excitability of Fmr1−/y CA1 neurons in ex vivo hippocampal slices, which correlated with reduced synaptic inputs from the medial entorhinal cortex. Lastly, activity patterns of CA1 pyramidal neurons were dis-coordinated with respect to hippocampal oscillatory activity in Fmr1−/y rats. Limitations It is still unclear how the observed circuit function abnormalities give rise to behavioural deficits in Fmr1−/y rats. Future experiments will focus on this connection as well as the contribution of other neuronal cell types in the hippocampal circuit pathophysiology associated with the loss of FMRP. It would also be interesting to see if hippocampal circuit deficits converge with those seen in other rodent models of intellectual disability. Conclusions In conclusion, we found that hippocampal place cells from Fmr1−/y rats show similar spatial firing properties as those from WT rats but do not show the same experience-dependent increase in spatial specificity or the experience-dependent changes in network coordination. Our findings offer support to a network-level origin of cognitive deficits in FXS.
Fragile X syndrome (FXS) is a common single gene cause of intellectual disability and Autism Spectrum Disorder. Cognitive inflexibility is one of the hallmarks of FXS, with affected individuals showing extreme difficulty adapting to novel or complex situations. To explore the neural correlates of this cognitive inflexibility, we used a rat model of FXS (Fmr1 KO), and recorded from the CA1 region of the hippocampus while animals habituated in a novel environment for two consecutive days. On the first day of exploration, the firing rate and spatial tuning of CA1 pyramidal neurons was similar between wild-type (WT) and Fmr1 KO rats. However, while CA1 pyramidal neurons from WT rats showed experience-dependent changes in firing and spatial tuning between the first and second day of exposure to the environment, these changes were decreased or absent in CA1 neurons of Fmr1 KO rats. These findings were consistent with increased excitability of Fmr1 KO CA1 neurons in ex-vivo hippocampal slices, which correlated with reduced synaptic inputs from the medial entorhinal cortex. Lastly, activity patterns of CA1 pyramidal neurons were discoordinated with respect to hippocampal oscillatory activity in Fmr1 KO rats. These findings suggest a network-level origin of cognitive deficits in FXS.
A fundamental property of place cells in the hippocampus is the anchoring of their firing fields to salient landmarks within the environment. However, it is unclear how such information reaches the hippocampus. In the current experiment, we tested the hypothesis that the stimulus control exerted by distal visual landmarks requires input from the medial entorhinal cortex (MEC). Place cells were recorded from mice with ibotenic acid lesions of the MEC (n = 7) and from shamlesioned mice (n = 6) following 90° rotations of either distal landmarks or proximal cues in a cuecontrolled environment. We found that lesions of the MEC impaired the anchoring of place fields to distal landmarks, but not proximal cues. We also observed that, relative to sham-lesioned mice, place cells in animals with MEC lesions exhibited significantly reduced spatial information and increased sparsity. These results support the view that distal landmark information reaches the hippocampus via the MEC, but that proximal cue information can do so via an alternative neural pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.