BackgroundWomen have better patient outcomes in HIV care and treatment than men in sub-Saharan Africa. We assessed—at the population level—whether and to what extent mass HIV treatment is associated with changes in sex disparities in adult life expectancy, a summary metric of survival capturing mortality across the full cascade of HIV care. We also determined sex-specific trends in HIV mortality and the distribution of HIV-related deaths in men and women prior to and at each stage of the clinical cascade.Methods and FindingsData were collected on all deaths occurring from 2001 to 2011 in a large population-based surveillance cohort (52,964 women and 45,688 men, ages 15 y and older) in rural KwaZulu-Natal, South Africa. Cause of death was ascertained by verbal autopsy (93% response rate). Demographic data were linked at the individual level to clinical records from the public sector HIV treatment and care program that serves the region. Annual rates of HIV-related mortality were assessed for men and women separately, and female-to-male rate ratios were estimated in exponential hazard models. Sex-specific trends in adult life expectancy and HIV-cause-deleted adult life expectancy were calculated. The proportions of HIV deaths that accrued to men and women at different stages in the HIV cascade of care were estimated annually.Following the beginning of HIV treatment scale-up in 2004, HIV mortality declined among both men and women. Female adult life expectancy increased from 51.3 y (95% CI 49.7, 52.8) in 2003 to 64.5 y (95% CI 62.7, 66.4) in 2011, a gain of 13.2 y. Male adult life expectancy increased from 46.9 y (95% CI 45.6, 48.2) in 2003 to 55.9 y (95% CI 54.3, 57.5) in 2011, a gain of 9.0 y. The gap between female and male adult life expectancy doubled, from 4.4 y in 2003 to 8.6 y in 2011, a difference of 4.3 y (95% CI 0.9, 7.6). For women, HIV mortality declined from 1.60 deaths per 100 person-years (95% CI 1.46, 1.75) in 2003 to 0.56 per 100 person-years (95% CI 0.48, 0.65) in 2011. For men, HIV-related mortality declined from 1.71 per 100 person-years (95% CI 1.55, 1.88) to 0.76 per 100 person-years (95% CI 0.67, 0.87) in the same period. The female-to-male rate ratio for HIV mortality declined from 0.93 (95% CI 0.82–1.07) in 2003 to 0.73 (95% CI 0.60–0.89) in 2011, a statistically significant decline (p = 0.046). In 2011, 57% and 41% of HIV-related deaths occurred among men and women, respectively, who had never sought care for HIV in spite of the widespread availability of free HIV treatment. The results presented here come from a poor rural setting in southern Africa with high HIV prevalence and high HIV treatment coverage; broader generalizability is unknown. Additionally, factors other than HIV treatment scale-up may have influenced population mortality trends.ConclusionsMass HIV treatment has been accompanied by faster declines in HIV mortality among women than men and a growing female–male disparity in adult life expectancy at the population level. In 2011, over half of male HIV deaths occurred in men ...
Everything else equal, we would prefer broader and deeper cascades, denominator-denominator linkage, denominator-numerator linkage, single population, and longitudinal data over their respective alternatives. Increased investments in population-based cohorts and data linkage are required to complement clinical cohorts for 'broad' longitudinal cascade analyses.
Efficient and effective HIV prevention measures for generalized epidemics in sub-Saharan Africa have not yet been validated at the population-level. Design and impact evaluation of such measures requires fine-scale understanding of local HIV transmission dynamics. The novel tools of HIV phylogenetics and molecular epidemiology may elucidate these transmission dynamics. Such methods have been incorporated into studies of concentrated HIV epidemics to identify proximate and determinant traits associated with ongoing transmission. However, applying similar phylogenetic analyses to generalized epidemics, including the design and evaluation of prevention trials, presents additional challenges. Here we review the scope of these methods and present examples of their use in concentrated epidemics in the context of prevention. Next, we describe the current uses for phylogenetics in generalized epidemics, and discuss their promise for elucidating transmission patterns and informing prevention trials. Finally, we review logistic and technical challenges inherent to large-scale molecular epidemiological studies of generalized epidemics, and suggest potential solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.