To avoid large open surgery using scaffold transplants, small-sized cell carriers are employed to repair complexly shaped tissue defects. However, most cell carriers show poor cell adherences and viability. Therefore, polyhydroxyalkanoate (PHA), a natural biopolymer, is used to prepare highly open porous microspheres (OPMs) of 300-360 µm in diameter, combining the advantages of microspheres and scaffolds to serve as injectable carriers harboring proliferating stem cells. In addition to the convenient injection to a defected tissue, and in contrast to poor performances of OPMs made of polylactides (PLA OPMs) and traditional less porous hollow microspheres (PHA HMs), PHA OPMs present suitable surface pores of 10-60 µm and interconnected passages with an average size of 8.8 µm, leading to a high in vitro cell adhesion of 93.4%, continuous proliferation for 10 d and improved differentiation of human bone marrow mesenchymal stem cells (hMSCs). PHA OPMs also support stronger osteoblast-regeneration compared with traditional PHA HMs, PLA OPMs, commercial hyaluronic acid hydrogels, and carrier-free hMSCs in an ectopic bone-formation mouse model. PHA OPMs protect cells against stresses during injection, allowing more living cells to proliferate and migrate to damaged tissues. They function like a micro-Noah's Ark to safely transport cells to a defect tissue.
The medical community has expressed significant interest in the development of new types of artificial bones that mimic natural bones. In this study, computed tomography (CT)-guided fused deposition modeling (FDM) was employed to fabricate polycaprolactone (PCL)/hydroxyapatite (HA) and PCL 3D artificial bones to mimic natural goat femurs. The in vitro mechanical properties, in vitro cell biocompatibility, and in vivo performance of the artificial bones in a long load-bearing goat femur bone segmental defect model were studied. All of the results indicate that CT-guided FDM is a simple, convenient, relatively low-cost method that is suitable for fabricating natural bonelike artificial bones. Moreover, PCL/HA 3D artificial bones prepared by CT-guided FDM have more close mechanics to natural bone, good in vitro cell biocompatibility, biodegradation ability, and appropriate in vivo new bone formation ability. Therefore, PCL/HA 3D artificial bones could be potentially be of use in the treatment of patients with clinical bone defects.
Owing to the characteristics of mimicking human skin's function and transmitting sensory signals, electronic skin (eskin), as an emerging and exciting research field, has inspired tremendous efforts in the biomedical field. However, it is frustrating that most e-skins are prone to bacterial infections, resulting a serious threat to human health. Therefore, the construction of e-skin with an integrated perceptual signal and antibacterial properties is highly desirable. Herein, the dynamic supramolecular hydrogel was prepared through a freezing/thawing method by cross-linking the conductive graphene (G), biocompatible polyvinyl alcohol (PVA), self-adhesive polydopamine (PDA), and in situ formation antibacterial silver nanoparticles (AgNPs). Having fabricated the hierarchical network structure, the PVA−G−PDA−AgNPs composite hydrogel with a tensile strength of 1.174 MPa and an elongation of 331% paves way for flexible e-skins. Notably, the PVA−G−PDA−AgNPs hydrogel exhibits outstanding antibacterial activity to typical pathogenic microbes (e.g., Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus), which effectively prevents bacterial infections that harm human health. With self-adhesiveness to various surfaces and excellent conductivity, the PVA−G−PDA−AgNPs composite hydrogel was used as strain sensors to detect a variety of macroscale and microscale human motions successfully. Meanwhile, the excellent rehealing property allows the hydrogel to recycle as a new sensor to detect large-scale human activities or tiny movement. Based on these remarkable features, the antibacterial, self-adhesive, recyclable, and tough conductive composite hydrogels possess the great promising application in biomedical materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.