The rod-driven, All amacrine cells in the mammalian retina maintain homologous gap junctions with one another as well as heterologous gap junctions with on-cone bipolar cells. We used background illumination to study whether changes in the adaptational state of the retina affected the permeabilities of these two sets of gap junctions. To access changes in permeability, we injected single All amacrine cells with the biotinylated tracer, Neurobiotin, and measured the extent of tracer coupling to neighboring All cells and neighboring cone bipolar cells. We also measured the center-receptive field size of All cells to assess concomitant changes in electrical coupling. Our results indicate that in well dark-adapted retinas, All cells form relatively small networks averaging 20 amacrine cells and covering about 75 f«n. The size of these networks matched closely to the size of All cell on-center receptive fields. However, over most of their operating range, All cells formed dramatically larger networks, averaging 326 amacrine cells, which corresponded to an increased receptive-field size. As the retina was light adapted beyond the operating range of the All cells, they uncoupled to form networks comparable in size to those seen in well dark-adapted retinas. Our results, then, indicate that the adaptational state of the retina has a profound effect on the extent of electrical coupling between All amacrine cells. Although we observed light-induced changes in the number of tracer-coupled cone bipolar cells, these appeared to be an epiphenomenon of changes in homologous coupling between All amacrine cells. Therefore, in contrast to the robust changes in AII-AII coupling produced by background illumination, our data provided no evidence of a light-induced modulation of coupling between All cells and on-cone bipolar cells.
We examined the morphology and physiological response properties of the axon-bearing, long-range amacrine cells in the rabbit retina. These so-called polyaxonal amacrine cells all displayed two distinct systems of processes: (1) a dendritic field composed of highly branched and relatively thick processes and (2) a more extended, often sparsely branched axonal arbor derived from multiple thin axons emitted from the soma or dendritic branches. However, we distinguished six morphological types of polyaxonal cells based on differences in the fine details of their soma/dendritic/axonal architecture, level of stratification within the inner plexiform layer (IPL), and tracer coupling patterns. These morphological types also showed clear differences in their light-evoked response activity. Three of the polyaxonal amacrine cell types showed on-off responses, whereas the remaining cells showed on-center responses; we did not encounter polyaxonal cells with off-center physiology. Polyaxonal cells respected the on/off sublamination scheme in that on-off cells maintained dendritic/axonal processes in both sublamina a and b of the IPL, whereas processes of on-center cells were restricted to sublamina b. All polyaxonal amacrine cell types displayed large somatic action potentials, but we found no evidence for low-amplitude dendritic spikes that have been reported for other classes of amacrine cell. The center-receptive fields of the polyaxonal cells were comparable to the diameter of their respective dendritic arbors and, thus, were significantly smaller than their extensive axonal fields. This correspondence between receptive and dendritic field size was seen even for cells showing extensive homotypic and/or heterotypic tracer coupling to neighboring neurons. These data suggest that all polyaxonal amacrine cells are polarized functionally into receptive dendritic and transmitting axonal zones.
We studied the light-evoked responses of AII amacrine cells in the rabbit retina under dark- and light-adapted conditions. In contrast to the results of previous studies, we found that AII cells display robust responses to light over a 6-7 log unit intensity range, well beyond the operating range of rod photoreceptors. Under dark adaptation, AII cells showed an ON-center/OFF-surround receptive-field organization. The intensity-response profile of the center-mediated response component followed a dual-limbed sigmoidal function indicating a transition from rod to cone mediation as stimulus intensities were increased. Following light adaptation, the receptive-field organization of AII cells changed dramatically. Light-adapted AII cells showed both ON- and OFF-responses to stimulation of the center receptive field, but we found no evidence for an antagonistic surround. Interestingly, the OFF-center response appeared first following rapid light adaptation and was then replaced gradually over a 1-4 min period by the emerging ON-center response component. Application of the metabotropic glutamate receptor agonist APB, the ionotropic glutamate blocker CNQX, 8-bromo-cGMP, and the nitric oxide donor SNAP all showed differential effects on the various center-mediated responses displayed by dark- and light-adapted AII cells. Taken together, these pharmacological results indicated that different synaptic circuits are responsible for the generation of the different AII cell responses. Specifically, the rod-driven ON-center responses are apparently derived from rod bipolar cell synaptic inputs, whereas the cone-driven ON-center responses arise from signals crossing the gap junctions between AII cells and ON-center cone bipolar cells. Additionally, the OFF-center response of light-adapted AII cells reflects direct synaptic inputs from OFF-center cone bipolar cells to AII dendritic processes in the distal inner plexiform layer.
We examined the tracer coupling pattern of more than 15 morphological types of amacrine and ganglion cells in the rabbit retina. Individual cells were injected intracellularly with the biotinylated tracer Neurobiotin, which was then allowed to diffuse across gap junctions to label neighboring neurons. We found that homologous and/or heterologous tracer coupling was common for most proximal neurons. In fact, the starburst amacrine cell was the only amacrine cell type that showed no evidence of coupling. The remaining types of amacrine cell were coupled exclusively to other amacrines, either homologously or, more often, through a combination of homologous and heterologous junctions. In only one case did we visualize labeled ganglion cells following injection of Neurobiotin into an amacrine cell. In contrast, injection of Neurobiotin into ganglion cells almost always resulted in the labeling of amacrine cells. Taken together, these results suggest a directionality to the movement of tracer across gap junctions connecting amacrine and ganglion cells. We found that the coupling pattern for a given morphological type of cell was generally stereotypic and consistent across retinas. The notable exceptions to this finding were alpha ganglion cells and cells with morphology corresponding to that of on-off direction selective ganglion cells. In both cases, individual cells showed either extensive coupling to both amacrine and ganglion cells or no coupling at all. A notable finding was that, in every case, the neighboring cells within a tracer-coupled array were always within one gap junction of the injected neuron. Furthermore, in many cases, the array formed by the somata of tracer-coupled cells was almost perfectly coincident with the dendritic arbor of the injected cell. Thus, our results indicate that whereas coupling is extensive within the proximal retina, individual cells partake in coupled networks that are stereotypic and highly circumscribed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.