CaMK4 has an important function in autoimmune diseases, and the contribution of CaMK4 in psoriasis remains obscure. Here, we show that CaMK4 expression is significantly increased in psoriatic lesional skin from psoriasis patients compared to healthy human skin as well as inflamed skin from an imiquimod (IMQ)-induced mouse model of psoriasis compared to healthy mouse skin. Camk4-deficient (Camk4−/−) mice treated with IMQ exhibit reduced severity of psoriasis compared to wild-type (WT) mice. There are more macrophages and fewer IL-17A+γδ TCR+ cells in the skin of IMQ-treated Camk4−/− mice compared to IMQ-treated WT mice. CaMK4 inhibits IL-10 production by macrophages, thus allowing excessive psoriatic inflammation. Deletion of Camk4 in macrophages alleviates IMQ-induced psoriatic inflammation in mice. In keratinocytes, CaMK4 inhibits apoptosis as well as promotes cell proliferation and the expression of pro-inflammatory genes such as S100A8 and CAMP. Taken together, these data indicate that CaMK4 regulates IMQ-induced psoriasis by sustaining inflammation and provides a potential target for psoriasis treatment.
Background: T cell plays a crucial role in the occurrence and progression of Skin cutaneous melanoma (SKCM). This research aims to identify the actions of T cell proliferation-related genes (TRGs) on the prognosis and immunotherapy response of tumor patients.
Method: The clinical manifestation and gene expression data of SKCM patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. T cell proliferation-related molecular subtypes were identified utilizing consensus clustering. Subsequently, Cox and Lasso regression analysis was conducted to identify six prognostic genes, and a prognostic signature was constructed. A series of experiments, such as qRT-PCR, Western blotting and CCK8 assay, were then conducted to verify the reliability of the six genes.
Results: In this study, a grading system was established to forecast survival time and responses to immunotherapy, providing an overview of the tumoral immune landscape. Meanwhile, we identified six prognostic signature genes. Notably, we also found that C1RL protein may inhibit the growth of melanoma cell lines.
Conclusion: The scoring system depending on six prognostic genes showed great efficiency in predicting survival time. The system could help to forecast prognosis of SKCM patients, characterize SKCM immunological condition, assess patient immunotherapy response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.