Mast cell infiltration is often observed around human tumours. Inflammatory cells such as macrophages, neutrophils and mast cells infiltrating around tumours are known to contribute to tumour growth; however, the clinical significance of mast cell invasion in prostate cancer (PCa) has not been investigated. Mast cell infiltration was evaluated in 104 patients (age range, 45 -88 years; median, 72 years), who underwent needle biopsy of the prostate and were confirmed to have PCa. Needle biopsy specimens of prostate were sliced into 5-mm-thick sections and immunostained for mast cells with monoclonal antibody against mast cell-specific tryptase. Mast cells were counted systematically under a microscope ( Â 400 magnification), and the relations between mast cell numbers and clinicopathologic findings were evaluated. The mast cell count was evaluated for prognostic value by multivariate analysis. Mast cells were immunostained around the cancer foci. The median number of mast cells in each case was 16. The mast cell count was higher around cancer foci in patients with higher Gleason scores than in those with low Gleason scores. The mast cell number correlated well with clinical stage (Po0.001). Prostate-specific antigen-free survival of patients with higher mast cell counts was better than that in patients with lower mast cell counts (Po0.001). Multivariate analysis revealed that mast cell count was a significant prognostic factor (Po0.005). The number of mast cells infiltrating around cancer foci in prostate biopsy specimens can be a significant prognostic factor of PCa.
The transcription factor nuclear factor‐κB (NF‐κB) has been shown to be constitutively activated in various human malignancies, including leukemia, lymphoma and a number of solid tumors. NF‐κB regulates the transcriptional of genes important for tumor invasion, metastasis and chemoresistance. The sesquiterpene lactone parthenolide, an inhibition of NF‐κB, has been used conventionally to treat migraines and inflammation. In this study, renal cancer cell lines OUR‐10 and ACHN were used for in vitro experiments to evaluate growth‐inhibitory effects of parthenolide. An OUR‐10 xenograft model in nude mice was also used to investigate the in vivo growth‐inhibitory effects of parthenolide. Apoptosis in response to treatment of OUR‐10 cells with parthenolide was confirmed. Localization of NF‐κB in response to parthenolide treatment was examined of by immunofluorostaining of OUR‐10 cells with antibody against NF‐κB p65 and by Western blot analysis of OUR‐10 cell and tumor nuclear and cytosol fraction. Parthenolide effectively inhibited proliferation of cultured OUR‐10 cells and triggered apoptosis in vitro. Subcutaneous injection or oral administration of parthenolide showed significant tumor growth inhibition in the xenograft model via decreased production of interleukin‐8 (IL‐8) or vascular endothelial growth factor (VEGF). Immunohistochemistry and Western blot analysis showed decreased nuclear localization of NF‐κB and phosphorylated NF‐κB protein and subsequently expression of MMP‐9, Bcl‐xL and Cox‐2 in response to parthenolide treatment. These results indicate that parthenolide is a useful in the treatment of renal cell carcinoma and acts via inhibition of NF‐κB. © 2007 Wiley‐Liss, Inc.
BACKGROUND A third isozyme of human 5α-steroid reductase, 5α-reductase-3, was identified in prostate tissue at the mRNA level. However, the levels of 5α-reductase-3 protein expression and its cellular localization in human tissues remain unknown. METHODS A specific monoclonal antibody was developed, validated, and used to characterize for the first time the expression of 5α-reductase-3 protein in 18 benign and 26 malignant human tissue types using immunostaining analyses. RESULTS AND CONCLUSIONS In benign tissues, 5α-reductase-3 immunostaining was high in conventional androgen-regulated human tissues, such as skeletal muscle and prostate. However, high levels of expression also were observed in non-conventional androgen-regulated tissues, which suggest either multiples target tissues for androgens or different functions of 5α-reductase-3 among human tissues. In malignant tissues, 5α-reductase-3 immunostaining was ubiquitous but particularly over-expressed in some cancers compared to their benign counterparts, which suggests a potential role for 5α-reductase-3 as a biomarker of malignancy. In benign prostate, 5α-reductase-3 immunostaining was localized to basal epithelial cells, with no immunostaining observed in secretory/luminal epithelial cells. In high-grade prostatic intraepithelial neoplasia (HGPIN), 5α-reductase-3 immunostaining was localized in both basal epithelial cells and neoplastic epithelial cells characteristic of HGPIN. In androgen-stimulated and castration-recurrent prostate cancer (CaP), 5α-reductase-3 immunostaining was present in most epithelial cells and at similar levels, and at levels higher than observed in benign prostate. Analyses of expression and functionality of 5α-reductase-3 in human tissues may prove useful for development of treatment for benign prostatic enlargement and prevention and treatment of CaP.
Purpose: Chemoradiation therapy (CRT) is now widely recognized as bladder-preserving therapy for muscle-invasive bladder cancer (MIBC). However, some patients who fail CRT may miss the chance to be cured by cystectomy. Therefore, it is important to select patients with MIBC who are expected to have a good response to CRT. Several reports indicate that the excision repair cross-complementing group 1 (ERCC1) gene is associated with resistance to cisplatin and radiation therapy. In this study, we examined the correlation between ERCC1 and CRT in vitro and in vivo in bladder cancer.Experimental Design: Bladder cancer cell lines T24, 5637, Cl8-2 (multidrug-resistant subline of T24), and CDDP10-3 (cisplatin-resistant subline of T24) were used for in vitro assays to measure ERCC1 expression level and growth inhibition with cisplatin or ionizing radiation (IR). We then examined by immunohistochemistry that whether ERCC1 nuclear staining correlates with the efficacy of CRT using cisplatin in 22 patients with MIBC.Results: Cl8-2 cells expressed ERCC1 mRNA 5.96-fold higher than did T24. Cl8-2 and CDDP10-3 were more resistant to cisplatin or IR than was T24. Resistance to IR, but not to cisplatin, was removed by suppressing ERCC1 using siRNA in both Cl8-2 and CDDP10-3 cells. In immunohistochemistry with ERCC1, 6 of 8 positive cases did not have complete response to CRT, whereas 12 of 14 negative cases had complete response. Sensitivity and specificity were 75% and 85.7%, respectively (P ¼ 0.008).Conclusion: Although further study is needed, ERCC1 expression level may predict the efficacy of CRT for MIBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.