Abstract. This paper gives an error analysis of the multi-configuration time-dependent Hartree (MCTDH) method for the approximation of multi-particle time-dependent Schrödinger equations. The MCTDH method approximates the multivariate wave function by a linear combination of products of univariate functions and replaces the high-dimensional linear Schrödinger equation by a coupled system of ordinary differential equations and low-dimensional nonlinear partial differential equations. The main result of this paper yields an L 2 error bound of the MCTDH approximation in terms of a best-approximation error bound in a stronger norm and of lower bounds of singular values of matrix unfoldings of the coefficient tensor. This result permits us to establish convergence of the MCTDH method to the exact wave function under appropriate conditions on the approximability of the wave function, and it points to reasons for possible failure in other cases.Mathematics Subject Classification. 81V55, 58J90, 35F25.
A very general class of Runge-Kutta methods for Volterra integral equations of the second kind is analyzed. Order and stage order conditions are derived for methods of order p and stage order q = p up to the order four. We also investigate stability properties of these methods with respect to the basic and the convolution test equations. The systematic search for A- and V0-stable methods is described and examples of highly stable methods are presented up to the order p = 4 and stage order q = 4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.