Functional poly(m-phenylene isophthalamide), m-aramid (known as Nomex®) fibers with antimicrobial properties were prepared by applying quaternary ammonium salts (such as glycidyltrimethylammonium chloride (GTAC)) in combination with silver nanoparticles (AgNPs). The fibers treated by this simple process exhibited enhanced antimicrobial activity. In the coating process, the m-aramid fibers were immersed in a GTAC solution and reacted via the pad-dry-cure process. The GTAC-treated m-aramid fibers were then reacted with an Ag colloid solution at 40 C for 90 min to prepare GTAC/AgNP-treated m-aramid fibers. Scanning electron microscopy was used to confirm the surface morphology of the maramid fibers treated with GTAC and AgNPs. Changes in the chemical composition before and after GTAC and AgNP treatment were analyzed by scanning electron microscopy with energy-dispersive X-ray spectroscopy. The tensile strength of the GTAC/AgNP-treated m-aramid fibers declined by about 3.5% compared to that of untreated m-aramid fibers. Durability of the AgNPs on the m-aramid fibers treated with GTAC/AgNPs was demonstrated through a washing-fastness test, indicating 76% retention after five washing cycles. The antimicrobial activity analysis showed that the synergistic antimicrobial properties of the GTAC/AgNP-treated m-aramid fibers resulted in efficacy against P. aeruginosa.
Functional p-aramid fibers that can express antimicrobial activity were produced by simple processing of silver nanoparticles (AgNPs), which are well known as antimicrobial agents, by using glycidyltrimethylammonium chloride (GTAC), a quaternary ammonium salt. P-aramid fibers were treated with GTAC by the pad-dry-cure process and put into an Ag colloid solution for reactions at 40 • C for 90 min to prepare GTAC/AgNPs-treated p-aramid fibers. Through these processes, GTAC was used as a substitute for existing cross-linking agents. The changes in the degree of attachment of AgNPs to the surface of p-aramid fibers were determined using a scanning electron microscope according to parameters such as GTAC concentration, Ag colloid concentration, and reaction temperature. Through this study, the following results were obtained: (i) The tensile strength of AgNPs/GTAC-treated p-aramid fibers was found to be about 80% of that of untreated p-aramid fibers; (ii) Thermogravimetric analysis showed that the thermal stability of p-aramid fibers did not change much after GTAC/AgNPs treatment and (iii) Antimicrobial activity analysis showed that AgNPs/GTAC-treated p-aramid fibers exhibited superior antibacterial properties compared to untreated p-aramid fibers, which may or may not be the effect of GTAC or AgNPs, or both.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.