Many studies have shown how pigments and internal nanostructures generate color in nature. External surface structures can also influence appearance, such as by causing multiple scattering of light (structural absorption) to produce a velvety, super black appearance. Here we show that feathers from five species of birds of paradise (Aves: Paradisaeidae) structurally absorb incident light to produce extremely low-reflectance, super black plumages. Directional reflectance of these feathers (0.05–0.31%) approaches that of man-made ultra-absorbent materials. SEM, nano-CT, and ray-tracing simulations show that super black feathers have titled arrays of highly modified barbules, which cause more multiple scattering, resulting in more structural absorption, than normal black feathers. Super black feathers have an extreme directional reflectance bias and appear darkest when viewed from the distal direction. We hypothesize that structurally absorbing, super black plumage evolved through sensory bias to enhance the perceived brilliance of adjacent color patches during courtship display.
Male peacock spiders (
Maratus
, Salticidae) compete to attract female mates using elaborate, sexually selected displays. They evolved both brilliant colour and velvety black. Here, we use scanning electron microscopy, hyperspectral imaging and finite-difference time-domain optical modelling to investigate the deep black surfaces of peacock spiders. We found that super black regions reflect less than 0.5% of light (for a 30° collection angle) in
Maratus speciosus
(0.44%) and
Maratus karrie
(0.35%) owing to microscale structures. Both species evolved unusually high, tightly packed cuticular bumps (microlens arrays), and
M. karrie
has an additional dense covering of black brush-like scales atop the cuticle. Our optical models show that the radius and height of spider microlenses achieve a balance between (i) decreased surface reflectance and (ii) enhanced melanin absorption (through multiple scattering, diffraction out of the acceptance cone of female eyes and increased path length of light through absorbing melanin pigments). The birds of paradise (Paradiseidae), ecological analogues of peacock spiders, also evolved super black near bright colour patches. Super black locally eliminates white specular highlights, reference points used to calibrate colour perception, making nearby colours appear brighter, even luminous, to vertebrates. We propose that this pre-existing, qualitative sensory experience—‘sensory bias’—is also found in spiders, leading to the convergent evolution of super black for mating displays in jumping spiders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.