A PC-based training program (Road Awareness and Perception Training or RAPT; Pradhan et al., 2009), proven effective for improving young novice drivers' hazard anticipation skills, did not fully maximize the hazard anticipation performance of young drivers despite the use of similar anticipation scenarios in both, the training and the evaluation drives. The current driving simulator experiment examined the additive effects of expert eye movement videos following RAPT training on young drivers' hazard anticipation performance compared to video-only and RAPT-only conditions. The study employed a between-subject design in which 36 young participants (aged 18-21) were equally and randomly assigned to one of three experimental conditions, were outfitted with an eye tracker and drove four unique scenarios on a driving simulator to evaluate the effect of treatment on their anticipation skills. The results indicate that the young participants that viewed the videos of expert eye movements following the completion of RAPT showed significant improvements in their hazard anticipation ability (85%) on the subsequent experimental evaluation drives compared to those young drivers who were only exposed to either the RAPT training (61%) or the Video (43%). The results further imply that videos of expert eye movements shown immediately after RAPT training may improve the drivers' anticipation skills by helping them map and integrate the spatial and tactical knowledge gained in a training program within dynamic driving environments involving latent hazards.
Soft tissues in the human body typically have stiffness in the kilopascal (kPa) range. Accordingly, silicone and hydrogel flexible substrates have been proven to be useful substrates for culturing cells in a physical microenvironment that partially mimics in vivo conditions. Here, we present a simple protocol for characterizing the Young's moduli of isotropic linear elastic substrates typically used for mechanobiology studies. The protocol consists of preparing a soft silicone substrate on a Petri dish or stiff silicone, coating the top surface of the silicone substrate with fluorescent beads, using a millimeter-scale sphere to indent the top surface (by gravity), imaging the fluorescent beads on the indented silicone surface using a fluorescence microscope, and analyzing the resultant images to calculate the Young's modulus of the silicone substrate. Coupling the substrate's top surface with a moduli extracellular matrix protein (in addition to the fluorescent beads) allows the silicone substrate to be readily used for cell plating and subsequent studies using traction force microscopy experiments. The use of stiff silicone, instead of a Petri dish, as the base of the soft silicone, enables the use of mechanobiology studies involving external stretch. A specific advantage of this protocol is that a widefield fluorescence microscope, which is commonly available in many labs, is the major equipment necessary for this procedure. We demonstrate this protocol by measuring the Young's modulus of soft silicone substrates of different elastic moduli.
Summary:A PC-based training program (RAPT; Pradhan et al., 2009), proven effective for improving young novice drivers' hazard anticipation skills, does not improve the hazard anticipation performance of young drivers to ceiling despite the use of similar scenarios in both the training program and the evaluation drives. The current driving simulator experiment examined the effects of expert eye movement videos that demonstrated correct hazard anticipation, following RAPT-training on young drivers' hazard anticipation performance. The results indicate that viewing the expert eye movement videos following the completion of RAPT can further increase the hazard anticipation ability of young drivers on subsequent evaluation drives. The results imply that videos of expert eye movements, if used appropriately, can help young drivers effectively map and integrate the knowledge gained in a training program within dynamic driving environments involving latent hazards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.