This study aimed at estimating the sanitizing effectiveness of urea treatment by studying the inactivation kinetics of selected indicator microorganisms. Finished composts from a composting toilet were inoculated with indicator microorganisms and subjected to different urea concentrations (0.5–2% w/w) and temperatures (22, 32 and 42°C). The inactivation kinetics parameters were determined in relation to pH, ammonia content and temperature during treatment time. The results show that urea addition to compost enhanced inactivation of microorganisms. The decline in number of E. coli and Enterococus followed a linear reduction, while that of Ascaris lumbricoides eggs followed a linear reduction plus shoulder. The inactivation rate constants of all microorganisms tested were positively correlated to the increase of NH3(aq) concentration and temperature. The relationship between the inactivation rate of microorganisms, ammonia through urea concentration and temperature were established. Therefore, the best decimal decay of E. coli, Enterococus and A. lumbricoides eggs occurred with 2% w/w urea concentration at 42°C within 0.9, 1.1 and 1.4 days, respectively. E. coli was the most sensitive microorganism to urea treatment, while Enterococcus and A. lumbricoides eggs showed resistance, especially at lower temperatures. Urea treatment has proved to be an efficient option for safe reuse of compost from composting toilets.
The study aimed to reduce the storage time of urine treatment and assess the quality of treated urine after Solar DISinfection (SODIS) method. Microbiological analyses were performed on urine samples taken before each sunlight exposition, between 10am and 4pm at a frequency of 1 h, during which temperature was measured in PET bottles (1.5 L). The initial concentrations of Escherichia coli (E. coli) and Salmonella in unstored urine were 106 and 103 CFU/100 mL respectively. The combined effect of temperature and UV radiation increased inactivation efficiency of E. coli at 5 log units. On the other hand, 98% of Salmonella were inactivated in less than 3 h of continuous exposure between 12am and 3pm with temperature varying between 50 and 65 °C in PET bottles. The k values showed that the inactivation rate of Salmonella tested was accelerated when the temperature was above 50 °C. Then, the results indicated that the first-order exponential decay model is suitable to predict the inactivation of Salmonella in urine by SODIS the best way. General results showed that after 3 days of exposure to sunlight, urine collected via eco-toilet becomes bacteriological sanitized and therefore can be used in agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.