A novel exopolysaccharide (EPS), namely, B4-EPS, is produced by Arthrobacter sp. B4. Response surface methodology (RSM) was employed to optimize the fermentation medium for increasing B4-EPS production. Based on Plackett-Burman design (PBD), glucose, yeast extract, and KH2PO4 were selected as significant variables, which were further optimized by a central composite design (CCD). According to response surface and canonical analysis, the optimal medium was composed of 16.94 g/L glucose, 2.33 g/L yeast extract, and 5.32 g/L KH2PO4. Under this condition, the maximum yield of B4-EPS reached about 8.54 g/L after 72 hr of batch fermentation, which was pretty close to the predicted value (8.52 g/L). Furthermore, B4-EPS was refined by column chromatography. The main homogeneous fraction (B4-EPS1) was collected and applied to assay of antibiofilm activity. B4-EPS1 exhibited a dose-dependent inhibitory effect on biofilm formation of Pseudomonas aeruginosa PAO1 without antibacterial activity. About 86.1% of biofilm formation of P. aeruginosa PAO1 was inhibited in the presence of 50 µg/mL B4-EPS1, which was more effective than the peer published data. Moreover, B4-EPS1 could prevent biofilm formation of other strains. These data suggest B4-EPS may represent a promising strategy to combat bacterial biofilms in the future.
As a kind of microscale physical evidence, soil can provide significant assistance to forensic science. In this study, soil samples that were collected from eighteen different regions of Shandong Province, China, were examined by scanning electron microscopeenergy dispersive spectrometer (SEM-EDS). The homogeneities and diameters of the samples were evaluated by SEM which has been applied to observe objects at nanoscale. The soil from Jiaxiang, a city in Eastern Shandong Province, showed the maximal particle diameter and the sample from Liaocheng, another Eastern city in Shandong Province, showed the best homogeneity. The mass fraction and molar percentages of nine inorganic elements in all samples were analyzed by EDS. Oxygen and silicon showed the highest content in all of these samples. However, different samples exhibited their own characteristic elements, which can help to discriminate them from other samples. In this regard, SEM-EDS-based homogeneity and element analysis might be used as a fast and reliable technique for the soil criminological analysis in Shandong Province.
Soil is useful as a kind of trace evidence for forensic science. Thus it is very crucial to identify sources of soil. The nanoscale soil organic matter (NSOMs) can be used to differentiate soil sources because their constituents and contents are relatively stable with time but variant by location. In this study, NSOMs from eighteen regions of Shandong Province in China were examined by middle infrared spectrum (4000–400 cm−1). The results showed that the constituents and contents of NSOMs in eighteen samples were dramatically different; a NSOM fingerprint for each sample was drawn based on these characteristics. This suggests that a national or global NSOM fingerprint database could be rapidly established by the one-step middle infrared spectrum analysis for different soil samples, which will be helpful to determine crime scenes by comparing the middle infrared spectrum of forensic soil with the NSOMs fingerprint database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.