Long non-coding RNA (lncRNA) H19 is involved in tumor development, progression, and metastasis. This case-control study assessed the association between H19 genetic variants and susceptibility to gastric cancer (GC) in a Chinese Han population. We genotyped four lncRNA H19 single nucleotide polymorphisms (SNPs) (rs217727 C > T, rs2839698 C > T, rs3741216 A > T, rs3741219 T > C) in 500 GC patients and 500 healthy controls. Carriers of variant rs217727T and rs2839698T alleles showed increased GC risk (P = 0.008 and 0.011, respectively). Compared with the common genotype, CT + TT rs217727 and CT + TT rs2839698 genotypes were associated with significantly increased GC risk (P = 0.040, adjusted odds ratio [OR] = 1.32, 95% confidence interval [CI] = 1.01–1.71; P = 0.033, adjusted OR = 1.31, 95% CI = 1.02–1.69, respectively). Further stratified analyses revealed that the association between GC risk and variant genotypes of rs217727 was more profound in younger individuals (≤59 years) and non-smokers, while the association between risk and the rare rs2839698 genotype persisted in men and rural subjects. rs2839698 CT and TT genotypes were also associated with higher serum H19 mRNA levels compared with the CC genotype. These findings suggest that lncRNA H19 SNPs may contribute to susceptibility to GC.
In contrast to normal differentiated cells that depend on aerobicoxidation for energy production, cancer cells use aerobic glycolysis as the main source (Warburg's effect). The M2 splice isoform of pyruvate kinase (PKM2) is the key regulator for the aerobic glycolysis, high expression of PKM2 contributes to the aerobic glycolysis, promotes the growth of tumors. In the present study, we found that PKM2 was highly expressed in gastric cancer (GC) tissues and had a strongly inverse correlation with the expression of microRNA-let-7a (miR-let-7a). Furthermore, we found that the overexpression of miR-let-7a markedly suppressed the proliferation, migration, and invasion of GC cells by down-regulating the expression of PKM2. MicroRNAs (miRNAs) are important regulators play key roles in tumorigenesis and tumor progression. Although previous reports showed that let-7 family members act as tumor suppressors in many cancers. The specific regulatory mechanism of miR-let-7a to PKM2 in gastric cancer is still unclear. In this study, we revealed that miR-let-7a function as the antitumor and gene regulatory effects of PKM2 in GC cells.
Long noncoding RNAs (lncRNAs) are emerging as important regulators of tumorigenesis and are frequently dysregulated in cancers. Here, we identify a critical lncRNA TRPM2-AS which is aberrantly expressed in gastric cancer (GC) tissues by screening The Cancer Genome Atlas Program(TCGA) database of GC cohort, and its upregulation is clinically associated with advanced pathologic stages and poor prognosis in GC patients. Silencing TRPM2-AS inhibits the proliferation, metastasis and radioresistance of GC cell whereas ectopic expression of TRPM2-AS significantly improves the progression of GC cell in multiple experiments. Mechanistically, TRPM2-AS serves as a microRNA sponge or a competitive endogenous RNA (ceRNA) for tumor suppressive microRNA miR-612 and consequently modulates the derepression of IGF2BP1 and FOXM1. Moreover, induced upregulation of IGF2BP1 subsequently increases the expression of c-Myc and promotes GC cell progression. Meanwhile, TRPM2-AS promotes the radioreistance of GC cell through enhancing the expression of FOXM1 as well. Thus, our findings support a new regulatory axis between TRPM2-AS, miR-612, IGF2BP1, or FOXM1 which serve as crucial effectors in GC tumorigenesis and malignant development, suggesting a promising therapeutic and diagnostic direction for GC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.