Amid declining shark populations because of overfishing, a burgeoning shark watching industry, already well established in some locations, generates benefits from shark protection. We compile reported economic benefits at shark watching locations and use a meta-analytical approach to estimate benefits at sites without available data. Results suggest that, globally, c. 590,000 shark watchers expend > USD 314 million per year, directly supporting 10,000 jobs. By comparison, the landed value of global shark fisheries is currently c. USD 630 million and has been in decline for most of the past decade. Based on current observed trends, numbers of shark watchers could more than double within the next 20 years, generating > USD 780 million in tourist expenditures around the world. This supports optimistic projections at new sites, including those in an increasing number of shark sanctuaries established primarily for shark conservation and enacted in recognition of the ecological and economic importance of living sharks.
Climate change–reflected in significant environmental changes such as warming, sea level rise, shifts in salinity, oxygen and other ocean conditions–is expected to impact marine organisms and associated fisheries. This study provides an assessment of the potential impacts on, and the vulnerability of, marine biodiversity and fisheries catches in the Arabian Gulf under climate change. To this end, using three separate niche modelling approaches under a ‘business-as-usual’ climate change scenario, we projected the future habitat suitability of the Arabian Gulf (also known as the Persian Gulf) for 55 expert-identified priority species, including charismatic and non-fish species. Second, we conducted a vulnerability assessment of national economies to climate change impacts on fisheries. The modelling outputs suggested a high rate of local extinction (up to 35% of initial species richness) by 2090 relative to 2010. Spatially, projected local extinctions are highest in the southwestern part of the Gulf, off the coast of Saudi Arabia, Qatar and the United Arab Emirates (UAE). While the projected patterns provided useful indicators of potential climate change impacts on the region’s diversity, the magnitude of changes in habitat suitability are more uncertain. Fisheries-specific results suggested reduced future catch potential for several countries on the western side of the Gulf, with projections differing only slightly among models. Qatar and the UAE were particularly affected, with more than a 26% drop in future fish catch potential. Integrating changes in catch potential with socio-economic indicators suggested the fisheries of Bahrain and Iran may be most vulnerable to climate change. We discuss limitations of the indicators and the methods used, as well as the implications of our overall findings for conservation and fisheries management policies in the region.
Global fisheries are overexploited worldwide, yet crucial catch statistics reported to the Food and Agriculture Organization (FAO) by member countries remain unreliable. Recent advances in remote-sensing technology allow us to view fishing practices from space and mitigate gaps in catch reporting. Here, we use Google Earth to count intertidal fishing weirs off the coast of six countries in the Persian Gulf, otherwise known as the Arabian Gulf. Although the name of this body of water remains contentious, we use the name used in Google Earth. Combining, in a Monte Carlo procedure, the number of weirs (after correcting for poor resolution and imagery availability) with assumptions about daily catch and fishing season lengths, we estimate that 1900 (±79) weirs contribute to a regional catch up to six times higher than the officially reported catches of 5260 t. These results, which speak to the unreliability of officially reported fisheries statistics, provide the first example of fisheries catch estimates from space, and point to the potential for remote-sensing approaches to validate catch statistics and fisheries operations in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.