In this article, we have investigated solutions to a symmetry chaotic system with fractional derivative order using two different methods—the numerical scheme for the ABC fractional derivative, and the Laplace decomposition method, with help from the MATLAB and Mathematica platforms. We have explored progressive and efficient solutions to the chaotic model through the successful implementation of two mathematical methods. For the phase portrait of the model, the profiles of chaos are plotted by assigning values to the attached parameters. Hence, the offered techniques are relevant for advanced studies on other models. We believe that the unique techniques that have been proposed in this study will be applied in the future to build and simulate a wide range of fractional models, which can be used to address more challenging physics and engineering problems.
This study investigates the multistability phenomenon and coexisting attractors in the modified Autonomous Van der Pol-Duffing (MAVPD) system and its fractional-order form. The analytical conditions for existence of periodic solutions in the integer-order system via Hopf bifurcation are discussed. In addition, conditions for approximating the solutions of the fractional version to periodic solutions are obtained via the Hopf bifurcation theory in fractional-order systems. Moreover, the technique for hidden attractors localization in the integer-order MAVPD is provided. Therefore, motivated by the previous discussion, the appearances of self-excited and hidden attractors are explained in the integer- and fractional-order MAVPD systems. Phase transition of quasi-periodic hidden attractors between the integer- and fractional-order MAVPD systems is observed. Throughout this study, the existence of complex dynamics is also justified using some effective numerical measures such as Lyapunov exponents, bifurcation diagrams and basin sets of attraction.
This study focuses on the solution of the rotationally symmetric Rossler attractor by using the adaptive predictor–corrector algorithm (Apc-ABM-method) and the fractional Laplace decomposition method (ρ-Laplace DM). Furthermore, a comparison between the proposed methods and Runge–Kutta Fourth Order (RK4) is made. It is discovered that the proposed methods are effective and yield solutions that are identical to the approximate solutions produced by the other methods. Therefore, we can generalize the approach to other systems and obtain more accurate results. In addition to this, it has been shown to be useful for correctly discovering examples via the demonstration of attractor chaos. In the future, the two methods can be used to find the numerical solution to a variety of models that can be used in science and engineering applications.
In this work, complex dynamics are found in a fractional-order multi-scroll chaotic system based on the extended Gamma function. Firstly, the extended left and right Caputo fractional differential operators are introduced. Then, the basic features of the extended left Caputo fractional differential operator are outlined. The proposed operator is shown to have a new fractional parameter (higher degree of freedom) that increases the system’s ability to display more varieties of complex dynamics than the corresponding case of the Caputo fractional differential operator. Numerical results are performed to show the effectiveness of the proposed fractional operators. Then, rich complex dynamics are obtained such as coexisting one-scroll chaotic attractors, coexisting two-scroll chaotic attractors, or approximate periodic cycles, which are shown to persist in a shorter range as compared with the corresponding states of the integer-order counterpart of the multi-scroll system. The bifurcation diagrams, basin sets of attractions, and Lyapunov spectra are used to confirm the existence of the various scenarios of complex dynamics in the proposed systems.
A review of the literature demonstrates that the Fox–Wright function is not only a mathematical puzzle, but its role is naturally to represent basic physical phenomena. Motivated by this fact, we studied a new representation of this function in terms of complex delta functions. This representation was useful to compute its Laplace transform with respect to the third parameter γ for which it also generalizes the one and two-parameter Mittag-Leffler functions. New identities involving the Fox–Wright function were discussed and used to simplify the results. Different fractional transforms were evaluated and the solution of a fractional kinetic equation was obtained by using its new representation. Several new properties of this function were discussed as a distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.