Wasp parasitoids use a variety of methods to commandeer their insect hosts in order to create an environment that will support and promote their own development, usually to the detriment of the host insect. Parasitized insects typically undergo developmental arrest and die sometime after the parasitoid has become independent of its host. Parasitoids can deactivate their host's immune system and effect changes in host hormone titers and behavior. Often, host tissues or organs become refractory to stimulation by tropic hormones. Here we present an overview of the manipulative capabilities of wasp-injected calyx fluid containing polydnaviruses and venom, as well as the parasitoid larva and the teratocytes that originate from the serosal membrane that surrounds the developing embryo of the parasitoid. Possibilities for using regulatory molecules produced by the parasitoid or its products that would be potentially useful in developing new, environmentally safe insect control agents are discussed.
The developmental progress of silverleaf whitefly (Bemisia argentifolii) 3rd instars and 4th instar/pharate adults was monitored using a tracking system that had been designed to identify synchronous individuals in another species of whitefly, the greenhouse whitefly, Trialeurodes vaporariorum. When reared on greenbean under conditions of LD 16:8 and a temperature of 26 +/- 2 degrees C, the body depth of 3rd instar SLWFs increased from approximately 0.04 mm (Stage 2) to 0.175-0.2 mm (Stage 7-8) and the body depth of the 4th instar increased from approximately 0.1 mm (Stage 1) to 0.25-0.30 mm (Stage 4-5). The durations of the 3rd instar and the 4th instar/pharate adult were approximately 3 and 7 days, respectively. Examination of coronal sections of 4th instars revealed that adult eye and wing development are initiated during Stage 6, the stage in which an external examination showed that the eye has begun to undergo pigment diffusion. Ecdysteroid titers peaked at approximately 400 fg/ micro g protein during stages 4 through 6A of the 4th instar, i.e., just prior to and upon the initiation of the pharate adult stage. Although adult development is initiated later in the SLWF than in the GHWF (adult eye and wing development begin in Stages 4 and 5, respectively, in GHWFs), the same rapidity of metamorphosis is observed in both species. Within approximately 24 h, the simple bi-layered wing bud developed into a deeply folded wing of nearly adult proportions and within an additional 12-24 h, the nymphal eye and wing bud had been replaced by the well-differentiated eye and wing of the adult whitefly. Our study is the first to describe the regulation, timing, and progress of the nymphal-adult molt and of the structural changes that accompany nymphal-adult metamorphosis in the SLWF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.