Abstract:Infiltration systems are widely used as an effective urban stormwater control measure. Most design methods and models roughly approximate the complex physical flow processes in these systems using empirical equations and fixed infiltration rates to calculate emptying times from full. Sophisticated variably saturated flow models are available, but rarely applied owing to their complexity. This paper describes the development and testing of an integrated one-dimensional model of flow through the porous storage of a typical infiltration system and surrounding soils. The model accounts for the depth in the storage, surrounding soil moisture conditions and the interaction between the storage and surrounding soil. It is a front-tracking model that innovatively combines a soil-moisture-based solution of Richard's equation for unsaturated flow with piston flow through a saturated zone as well as a reservoir equation for flow through a porous storage. This allows the use of a simple non-iterative numerical solution that can handle ponded infiltration into dry soils. The model is more rigorous than approximate stormwater infiltration system models and could therefore be valuable in everyday practice. A range of test cases commonly used to test soil water flow models for infiltration in unsaturated conditions, drainage from saturation and infiltration under ponded conditions were used to test the model along with an experiment with variable depth in a porous storage over saturated conditions. Results show that the model produces a good fit to the observed data, analytical solutions and Hydrus.
Stormwater infiltration systems are a popular method for urban stormwater control. They are often designed using an assumption of one‐dimensional saturated outflow, although this is not very accurate for many typical designs where two‐dimensional (2D) flows into unsaturated soils occur. Available 2D variably saturated flow models are not commonly used for design because of their complexity and difficulties with the required boundary conditions. A purpose‐built stormwater infiltration system model was thus developed for the simulation of 2D flow from a porous storage. The model combines a soil moisture–based model for unsaturated soils with a ponded storage model and uses a wetting front‐tracking approach for saturated flows. The model represents the main physical processes while minimizing input data requirements. The model was calibrated and validated using data from laboratory 2D stormwater infiltration trench experiments. Calibrations were undertaken using five different combinations of calibration data to examine calibration data requirements. It was found that storage water levels could be satisfactorily predicted using parameters calibrated with either data from laboratory soils tests or observed water level data, whereas the prediction of soil moistures was improved through the addition of observed soil moisture data to the calibration data set. Copyright © 2012 John Wiley & Sons, Ltd.
Green roofs (GR) are known as one of the most effective water-sensitive urban design (WSUD) strategies to deal with numerous environmental and social issues that urbanized cities face today. The overall quality of research on GRs has significantly improved and an increasing trend is observed in the amount of research over the last decade. Among several approaches, the application of modeling tools is observed to be an effective method to simulate and evaluate the performance of GRs. Given that studies on GRs at a catchment scale are limited, this paper aims to provide a simple but effective framework for estimating the catchment-scale impacts of GR on runoff quantity and quality. MUSICX, an Australian-developed software that possesses the advantages of a conceptual model, is chosen as the modeling tool in this study. While MUSICX has built-in meteorological templates for Australian regions, this tool also supports several climate input file formats for application by modelers in other parts of the world. This paper presents two different modeling approaches using the Land Use node and Bioretention node in MUSICX. The steps used for model calibration are also provided in this paper. The modeling results present the annual reductions in runoff volume, total suspended solid (TSS), total phosphate (TP), and total nitrogen (TN) load. The largest reductions of roughly 30% per year were observed in runoff volume and TN load. The annual runoff reduction rate reported in this study is close to that of other published results. Similar research outcomes quantifying the benefits of GRs play a major role in facilitating the widespread implementation of GRs due to the awareness of both positive and negative impacts of GRs. Future studies are recommended to concentrate on modeling the impacts of implementing GRs at a large scale (i.e., scales exceeding the single-building scale) to fill the research gaps and enhance the modeling accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.