Residual viremia can be detected in most HIV-1-infected patients on antiretroviral therapy despite suppression of plasma RNA to <50 copies per ml, but the source and duration of this viremia is currently unknown. Therefore, we analyzed longitudinal plasma samples from 40 patients enrolled in the Abbott M97-720 trial at baseline (pretherapy) and weeks 60 to 384 by using an HIV-1 RNA assay with single-copy sensitivity. All patients were on therapy (lopinavir/ritonavir, stavudine, and lamivudine) with plasma HIV RNA <50 copies per ml by week 96 of the study and thereafter. Single-copy assay results revealed that 77% of the patient samples had detectable low-level viremia (>1 copy per ml), and all patients had at least one sample with detectable viremia. A nonlinear mixed effects model revealed a biphasic decline in plasma RNA levels occurring over weeks 60 to 384: an initial phase of decay with a half-life of 39 weeks and a subsequent phase with no perceptible decay. The level of pretherapy viremia extrapolated for each phase of decay was significantly correlated with total baseline viremia for each patient (R 2 ؍ 0.27, P ؍ 0.001 and R 2 ؍ 0.19, P < 0.005, respectively), supporting a biological link between the extent of overall baseline viral infection and the infection of long-lived reservoirs. These data suggest that low-level persistent viremia appears to arise from at least two cell compartments, one in which viral production decays over time and a second in which viral production remains stable for at least 7 years.
Examination of the structural basis for antiviral activity, oral pharmacokinetics, and hepatic metabolism among a series of symmetry-based inhibitors of the human immunodeficiency virus (HIV) protease led to the discovery of ABT-538, a promising experimental drug for the therapeutic intervention in acquired immunodeficiency syndrome (AIDS). ABT-538 exhibited potent in vitro activity against laboratory and clinical strains of HIV-1 [50%7 effective concentration (EC50) = 0.022-0.13 ,uM] and HIV-2 (EC50 = 0.16 ,uM). Following a single 10-mg/kg oral dose, plasma concentrations in rat, dog, and monkey exceeded the in vitro antiviral EC5. for > 12 h. In human trials, a single 400-mg dose of ABT-538 displayed a prolonged absorption profile and achieved a peak plasma concentration in excess of 5 ,ug/ml. These findings demonstrate that high oral bioavailability can be achieved in humans with peptidomimetic inhibitors of HIV protease.
Current antiretroviral therapy is effective in suppressing but not eliminating HIV-1 infection. Understanding the source of viral persistence is essential for developing strategies to eradicate HIV-1 infection. We therefore investigated the level of plasma HIV-1 RNA in patients with viremia suppressed to less than 50–75 copies/ml on standard protease inhibitor- or non-nucleoside reverse transcriptase inhibitor-containing antiretroviral therapy using a new, real-time PCR-based assay for HIV-1 RNA with a limit of detection of one copy of HIV-1 RNA. Single copy assay results revealed that >80% of patients on initial antiretroviral therapy for 60 wk had persistent viremia of one copy/ml or more with an overall median of 3.1 copies/ml. The level of viremia correlated with pretherapy plasma HIV-1 RNA but not with the specific treatment regimen. Longitudinal studies revealed no significant decline in the level of viremia between 60 and 110 wk of suppressive antiretroviral therapy. These data suggest that the persistent viremia on current antiretroviral therapy is derived, at least in part, from long-lived cells that are infected prior to initiation of therapy.
A two-fold (C2) symmetric inhibitor of the protease of human immunodeficiency virus type-1 (HIV-1) has been designed on the basis of the three-dimensional symmetry of the enzyme active site. The symmetric molecule inhibited both protease activity and acute HIV-1 infection in vitro, was at least 10,000-fold more potent against HIV-1 protease than against related enzymes, and appeared to be stable to degradative enzymes. The 2.8 angstrom crystal structure of the inhibitor-enzyme complex demonstrated that the inhibitor binds to the enzyme in a highly symmetric fashion.
The valine at position 82 (Val 82) in the active site of the human immunodeficiency virus (HIV) protease mutates in response to therapy with the protease inhibitor ritonavir. By using the X-ray crystal structure of the complex of HIV protease and ritonavir, the potent protease inhibitor ABT-378, which has a diminished interaction with Val 82, was designed. ABT-378 potently inhibited wild-type and mutant HIV protease (Ki = 1.3 to 3.6 pM), blocked the replication of laboratory and clinical strains of HIV type 1 (50% effective concentration [EC50], 0.006 to 0.017 μM), and maintained high potency against mutant HIV selected by ritonavir in vivo (EC50, ≤0.06 μM). The metabolism of ABT-378 was strongly inhibited by ritonavir in vitro. Consequently, following concomitant oral administration of ABT-378 and ritonavir, the concentrations of ABT-378 in rat, dog, and monkey plasma exceeded the in vitro antiviral EC50 in the presence of human serum by >50-fold after 8 h. In healthy human volunteers, coadministration of a single 400-mg dose of ABT-378 with 50 mg of ritonavir enhanced the area under the concentration curve of ABT-378 in plasma by 77-fold over that observed after dosing with ABT-378 alone, and mean concentrations of ABT-378 exceeded the EC50 for >24 h. These results demonstrate the potential utility of ABT-378 as a therapeutic intervention against AIDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.