Our results suggest that: (1) the acute behaviour of neurophysiological measures is similar between HST and HYT; and (2) the increase in corticospinal excitability may be a compensatory response to attenuate peripheral fatigue.
The use of virtual reality games (known as “exergaming”) as a neurorehabilitation tool is gaining interest. Therefore, we aim to collate evidence for the effects of exergaming on the balance and postural control of older adults and people with idiopathic Parkinson’s disease (IPD). Six electronic databases were searched, from inception to April 2015, to identify relevant studies. Standardized mean differences (SMDs) and 95% confidence intervals (CI) were used to calculate effect sizes between experimental and control groups. I2 statistics were used to determine levels of heterogeneity. 325 older adults and 56 people with IPD who were assessed across 11 studies. The results showed that exergaming improved static balance (SMD 1.069, 95% CI 0.563–1.576), postural control (SMD 0.826, 95% CI 0.481–1.170), and dynamic balance (SMD −0.808, 95% CI −1.192 to −0.424) in healthy older adults. Two IPD studies showed an improvement in static balance (SMD 0.124, 95% CI −0.581 to 0.828) and postural control (SMD 2.576, 95% CI 1.534–3.599). Our findings suggest that exergaming might be an appropriate therapeutic tool for improving balance and postural control in older adults, but more large-scale trials are needed to determine if the same is true for people with IPD.
BackgroundPeople with Parkinson’s disease (PD) commonly experience postural instability, resulting in poor balance and an increased risk of falls. Exercise-based video gaming (exergaming) is a form of physical training that is delivered through virtual reality technology to facilitate motor learning and is efficacious in improving balance in aged populations. In addition, studies have shown that anodal transcranial direct current stimulation (a-tDCS), when applied to the primary motor cortex, can augment motor learning when combined with physical training. However, no studies have investigated the combined effects of exergaming and tDCS on balance in people with PD.Methods/designTwenty-four people with mild to moderate PD (Hoehn and Yahr scale score 2–4) will be randomly allocated to receive one of three interventions: (1) exergaming + a-tDCS, (2) exergaming + sham a-tDCS or (3) usual care. Participants in each exergaming group will perform two training sessions per week for 12 weeks. Each exergaming session will consist of a series of static and dynamic balance exercises using a rehabilitation-specific software programme (Jintronix) and 20 minutes of either sham or real a-tDCS (2 mA) delivered concurrently. Participants allocated to usual care will be asked to maintain their normal daily physical activities. All outcome measures will be assessed at baseline and at 6 weeks (mid-intervention), 12 weeks (post-intervention) and 24 weeks (3-month follow-up) after baseline. The primary outcome measure will be the Limits of Stability Test. Secondary outcomes will include measures of static balance, leg strength, functional capacity, cognitive task-related cortical activation, corticospinal excitability and inhibition, and cognitive inhibition.DiscussionThis will be the first trial to target balance in people with PD with combined exergaming and a-tDCS. We hypothesise that improvements in balance, functional and neurophysiological outcome measures, and neurocognitive outcome measures will be greater and longer-lasting following concurrent exergaming and a-tDCS than in those receiving sham tDCS or usual care.Trial registrationAustralian New Zealand Clinical Trials Registry, ACTRN12616000594426). Registered on 9 May 2016.Electronic supplementary materialThe online version of this article (10.1186/s13063-018-2773-6) contains supplementary material, which is available to authorized users.
THERE IS A PAUCITY OF SPORT-SPECIFIC EVIDENCE REGARDING STRENGTH AND CONDITIONING STRATEGIES TO IMPROVE ELITE JUDO ATHLETES' (EJA) PERFORMANCE. THEREFORE, THE AIM OF THIS ARTICLE IS TO EVALUATE THE CURRENT LITERATURE AND PRESENT EVIDENCE-BASED TRAINING RECOMMENDATIONS FOR EJA. BASED ON THE SPORT-SPECIFIC DEMANDS, APPROPRIATELY SEQUENCED PERIODIZED STRENGTH AND CONDITIONING PROGRAMS THAT INCLUDE (a) HEAVY STRENGTH TRAINING, (b) POWER TRAINING (i.e., CONTRAST LOADING, CLUSTER SETS, WEIGHTLIFTING, AND PLYOMETRIC EXERCISES), AND (c) HIGH-INTENSITY INTERVAL TRAINING MAY PROVIDE SUFFICIENT STIMULI TO IMPROVE UPPER- AND LOWER-BODY STRENGTH, AEROBIC AND ANAEROBIC POWER FOR EJA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.