Complex interactions between host immunity and the microbiome regulate norovirus infection. However, the mechanism of host immune promotion of enteric virus infection remains obscure. The cellular tropism of noroviruses is also unknown. Recently, we identified CD300lf as a murine norovirus (MNoV) receptor. Here we show that tuft cells, a rare type of intestinal epithelial cell, express CD300lf and are the target cell for MNoV in the mouse intestine. We found that type 2 cytokines, which induce tuft cell proliferation, promote MNoV infection in vivo. These cytokines can replace the effect of commensal microbiota in promoting virus infection. This is the first report of viral infection of tuft cells and provides insight into how the immune system and microbes can coordinately promote enteric viral infection.
The level of proteolysis within phagosomes of dendritic cells (DCs) is thought to be tightly regulated, as it directly impacts the cell's efficiency to process antigen. Activity of the antimicrobial effector NADPH oxidase (NOX2) has been shown to reduce levels of proteolysis within phagosomes of both macrophages and DCs. However, the proposed mechanisms underlying these observations in these two myeloid cell lineages are dissimilar. Using real-time analysis of lumenal microenvironmental parameters within phagosomes in live bone marrow-derived DCs, we show that the levels of phagosomal proteolysis are diminished in the presence of NOX2 activity, but in contrast to previous reports, the acidification of the phagosome is largely unaffected. As found in macrophages, we show that NOX2 controls phagosomal proteolysis in DCs through redox modulation of local cysteine cathepsins. Aspartic cathepsins were unaffected by redox conditions, indicating that NOX2 skews the relative protease activities in these antigen processing compartments. The ability of DC phagosomes to reduce disulphides was also compromised by NOX2 activity, implicating this oxidase in the control of an additional antigen processing chemistry of DCs.
The phagosomal lumen in macrophages is the site of numerous interacting chemistries that mediate microbial killing, macromolecular degradation, and antigen processing. Using a non-hypothesisbased screen to explore the interconnectivity of phagosomal functions, we found that NADPH oxidase (NOX2) negatively regulates levels of proteolysis within the maturing phagosome of macrophages. Unlike the NOX2 mechanism of proteolytic control reported in dendritic cells, this phenomenon in macrophages is independent of changes to lumenal pH and is also independent of hydrolase delivery to the phagosome. We found that NOX2 mediates the inhibition of phagosomal proteolysis in macrophages through reversible oxidative inactivation of local cysteine cathepsins. We also show that NOX2 activity significantly compromises the phagosome's ability to reduce disulfides. These findings indicate that NOX2 oxidatively inactivates cysteine cathepsins through sustained ablation of the reductive capacity of the phagosomal lumen. This constitutes a unique mechanism of spatiotemporal control of phagosomal chemistries through the modulation of the local redox environment. In addition, this work further implicates the microbicidal effector NOX2 as a global modulator of phagosomal physiologies, particularly of those pertinent to antigen processing.phagocytosis | cathepsin | disulfide reduction | antigen processing | lysosome U nlike many specialized lineages of the mononuclear phagocyte system, tissue macrophages function in a diverse array of homeostatic and immune physiologies. Critical to many of these functions is the phagosome. Over the past decade, proteomic characterization of the phagosome in conjunction with biochemical analysis of phagosomal chemistries in reconstituted systems has given great insight into the function of this organelle (1, 2). More recently, measurement of phagosomal properties in live cells has enabled the in situ dissection of the complex crosstalk between spatiotemporally intimate phagosomal chemistries (3, 4). In particular, cross-talk influencing the control of phagosomal proteolysis has recently received much attention (4). It has become increasingly apparent that a tightly controlled, limited level of proteolysis within the endolysosomal system, as found in dendritic cells (DCs), is essential for efficient antigen processing (5, 6). Macrophages possess a reported 20-to 60-fold higher level of lysosomal proteolysis than DCs, which is implicated in limiting their efficiency as antigen-presenting cells (7-9). Nonetheless, macrophages are capable of productively presenting antigen to T cells and play an important role in the secondary immune response (10). This is presumably aided by the stringent control of the macrophage's lysosomal protease activities in its antigenprocessing compartments.Control of lysosomal proteases such as cathepsins occurs at several regulatory levels, including transcription, trafficking, prodomain removal, regulatory proteins (e.g. cystatins), and vacuolar pH (11). Modification of the redox...
Epithelial permeability is often increased in inflammatory bowel diseases. We hypothesized that perturbed mitochondrial function would cause barrier dysfunction and hence epithelial mitochondria could be targeted to treat intestinal inflammation. Mitochondrial dysfunction was induced in human colon-derived epithelial cell lines or colonic biopsy specimens using dinitrophenol, and barrier function was assessed by transepithelial flux of Escherichia coli with or without mitochondria-targeted antioxidant (MTA) cotreatment. The impact of mitochondria-targeted antioxidants on gut permeability and dextran sodium sulfate (DSS)-induced colitis in mice was tested. Mitochondrial superoxide evoked by dinitrophenol elicited significant internalization and translocation of E. coli across epithelia and control colonic biopsy specimens, which was more striking in Crohn's disease biopsy specimens; the mitochondria-targeted antioxidant, MitoTEMPO, inhibited these barrier defects. Increased gut permeability and reduced epithelial mitochondrial voltage-dependent anion channel expression were observed 3 days after DSS. These changes and the severity of DSS-colitis were reduced by MitoTEMPO treatment. In vitro DSS-stimulated IL-8 production by epithelia was reduced by MitoTEMPO. Metabolic stress evokes significant penetration of commensal bacteria across the epithelium, which is mediated by mitochondria-derived superoxide acting as a signaling, not a cytotoxic, molecule. MitoTEMPO inhibited this barrier dysfunction and suppressed colitis in DSS-colitis, likely via enhancing barrier function and inhibiting proinflammatory cytokine production. These novel findings support consideration of MTAs in the maintenance of epithelial barrier function and the management of inflammatory bowel diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.