In this paper, the Gram matrix is used to calculate the correlation of the filter response sets under different scale kernels learned by each layer of the network in the deconvolution, and the loss between the corresponding feature response correlations in the multilayer network is calculated. Linear summation is used to obtain a stable, multiscale image model representation. This paper extracts the contours of the salient areas of the image and adjusts the parameters of the deconvolution network to learn the salient area patterns of the image. At the same time, for the image to be generated, a shape template is used to limit the range of the area to be generated in order to obtain a shape image with similar patterns. When the spatial relative relationship characteristics of the image constituent objects are obvious, we appropriately add high-level semantic feature activation values for reinforcement. This paper solves the estimation of the unknown blur kernel by using image prior knowledge, filtering and gradient domain algorithms and other different technologies to obtain image jitter or scene movement information and estimate the size, location, and density of the blur kernel. This paper studies a relatively robust deconvolution model, which is insensitive to random noise, has stable effects, and can overcome the water ripple effect caused by the usual convolution process. This paper attempts to study the fuzzy model with variable space. The usual blur is a spatial invariant model; that is, a single kernel is used to describe the motion of all pixels on the image. By selecting different characteristic parameters, this paper conducts experimental research on some existing hydrophobic indicator function methods and calculates the relationship between characteristic parameters and hydrophobicity when different hydrophobic indicator functions are adopted. One characteristic of the hydrophobic image of composite insulators is low contrast. The traditional method of converting color images to grayscale images cannot improve the image contrast. This paper analyzes the hydrophobic image of the composite insulator, and the extracted B channel component image of the hydrophobic image improves the contrast of the image and facilitates the subsequent segmentation of water traces and background. In this paper, the water repellent image's watermark area is counted, and connected-domain wave processing is used to limit the area of water droplets retained, thereby improving the efficiency of filtering water droplets without having a big impact on the image as a whole. The problem of uneven illumination is an unavoidable problem in the field of image processing, and the resulting reflection problem brings difficulties to image processing. This article regards the reflective area of the watermark as a “hole” and uses the idea of “hole filling” to eliminate the reflective point, which weakens the reflection problem to a certain extent.
Multimodal tasks based on attention mechanism and language face numerous problems. Based on multimodal hierarchical attention mechanism and genetic neural network, this paper studies the application of image segmentation algorithm in data completion and 3D scene reconstruction. The algorithm refers to the process of concentrating attention that humans subjectively pay attention to and calculates the difference between each pixel in the genetic neural network test image in the color space and the average value of the target image, which solves the problem of static feature maps and dynamic feature maps of image sequences. In addition, in view of the problem that the number of attention enhancement feature extraction modules is too large and the parameters are too large, the recursive mechanism is used as the feature extraction branch, and new model parameters are not added when the network depth is increased. The simulation results show that the accuracy of the improved image saliency detection algorithm based on the attention mechanism reaches 89.7%, and the difference between the average value of the single-point pixel and the target image is reduced to 0.132, which further promotes the practicability and reliability of the image segmentation model.
Under this background, this paper tries to find countermeasures and ways for carbon reduction by observing and analyzing the influencing factors of carbon emissions, designing ways to minimize carbon emissions and maximize resources and energy. In view of the above problems, the carbon emission prediction research is closely combined with the research of deep neural network, the carbon emission prediction models based on deep neural network are established, respectively, and the game theory is introduced to maximize the resource economy. Based on the analysis of the cost of energy resources, this paper puts forward a model based on game theory and makes an overall planning of the bidding online auxiliary decision-making system in combination with the actual market demand. Build a big data analysis platform based on the Internet of things, collect the data related to carbon emission for normalization, analyze the influencing factors related to carbon emission by using the principal component analysis method, select the data with higher connection value, and take the time series data as the input of the deep neural network for simulation verification. The simulation results show that the game model of carbon emission minimization and energy resource economic maximization based on deep neural network can effectively improve the economic maximization of energy resources and reduce carbon emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.