Due to the complexity of the underwater environment, underwater acoustic target recognition (UATR) has always been challenging. Although deep neural networks (DNN) have been used in UATR and some achievements have been made, the performance is not satisfactory when recognizing underwater targets with different Doppler shifts, signal-to-noise ratios (SNR), and interferences. In the paper, a one-dimensional convolutional neural network (1D-CNN) was proposed to recognize the line spectrums of Detection of Envelope Modulation on Noise (DEMON) spectrums of underwater target-radiated noise. Datasets of targets with different Doppler shifts, SNRs, and interferences were designed to evaluate the generalization performance of the proposed CNN. Experimental results show that compared with traditional multilayer perceptron (MLP) networks, the 1D-CNN model better performs in recognition of targets with different Doppler shifts and SNRs. The outstanding generalization ability of the proposed model shows that it is suitable for practical engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.