The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), from Wuhan, China, in December 2019 has challenged many countries. The current pandemic caused by this coronavirus has already negatively affected millions of people and the economies of countries worldwide. However, the challenges faced by Saudi Arabia during the Middle East respiratory syndrome coronavirus (MERS-CoV) epidemic that began in 2012 led to marked improvements in the government’s response to the current pandemic. Saudi Arabia is one of largest countries in the Middle East and is home to the holiest Muslim sites. Since the global risk of the virus was declared by the World Health Organization (WHO), Saudi Arabia has taken substantial public health measures to control the spread of the infection. This review reports on the transmission of SARS-COV-2 in Saudi Arabia and the proactive responses taken by the government, comparing the Saudi government’s actions and their effects with those of other countries. Although Saudi Arabia is currently experiencing the peak of the pandemic, their early precautionary responses have shortened the period of individual/family isolation, reduced the number of confirmed infections and infection-related fatality rates, and decreased the economic burden of the people and the country compared with other countries in the Middle East and elsewhere.
Background One major challenge for detecting the virus that causes COVID19 is commercial SARSCoV2 testing kit or reagent availability. To allow every laboratory or hospital access to an inhouse assay, we developed two low cost SARSCoV2 detection assay protocols using inhouse primers and reagents equipment on hand in most biology or diagnostic laboratories a SYBR Green based RTPCR and PCR assays. RNA extraction has also become a major bottleneck due to limited supplies and the required labor. Thus, we validated alternative RNA extraction protocols. Methods SARSCoV2 genome sequences deposited into the GISAID database were retrieved to design and synthesize inhouse primers. Forty patient samples were collected by nasopharyngeal swab, coded, and used to develop and validate the assay protocols. Both assays used TRIzol and heat-processing techniques to extract RNA from patient samples and to inactivate the virus; thus, testing was conducted in a conventional biosafety level 2 laboratory. Results The sensitivity and specificity of the primers were evaluated using samples previously confirmed positive for SARSCoV2. The positive amplicons were sequenced to confirm the results. The assay protocols were developed, and the specificity of each PCR product was confirmed using melting curve analyses. The most accurate heat processing technique for primers with short amplicon lengths was 95C for 15 mins. Of 40 samples, both the SYBR Green based quantitative RTPCR assay and the PCR assay detected SARSCoV2 target genes in 28 samples, with no false positive or false-negative results. These findings were concordant with those of the diagnostic laboratory that tested the same samples using a Rotor Gene PCR cycler with an Altona Diagnostics SARSCoV2 kit (R2=0.889). Conclusions These approaches are reliable, repeatable, specific, sensitive, simple, and low cost tools for the detection of SARSCoV2 in a conventional biosafety level 2 laboratory, offering alternative approaches when commercial kits are unavailable or cost ineffective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.