Human stromal (mesenchymal) stem cells (hMSCs) are multipotent stem cells with ability to differentiate into mesoderm-type cells e.g. osteoblasts and adipocytes and thus they are being introduced into clinical trials for tissue regeneration. Traditionally, hMSCs have been isolated from bone marrow, but the number of cells obtained is limited. Here, we compared the MSC-like cell populations, obtained from alternative sources for MSC: adipose tissue and skin, with the standard phenotype of human bone marrow MSC (BM-MSCs). MSC from human adipose tissue (human adipose stromal cells (hATSCs)) and human skin (human adult skin stromal cells, (hASSCs) and human new-born skin stromal cells (hNSSCs)) grew readily in culture and the growth rate was highest in hNSSCs and lowest in hATSCs. Compared with phenotype of hBM-MSC, all cell populations were CD34−, CD45−, CD14−, CD31−, HLA-DR−, CD13+, CD29+, CD44+, CD73+, CD90+,and CD105+. When exposed to in vitro differentiation, hATSCs, hASSCs and hNSSCs exhibited quantitative differences in their ability to differentiate into adipocytes and to osteoblastic cells. Using a microarray-based approach we have unveiled a common MSC molecular signature composed of 33 CD markers including known MSC markers and several novel markers e.g. CD165, CD276, and CD82. However, significant differences in the molecular phenotype between these different stromal cell populations were observed suggesting ontological and functional differences. In conclusion, MSC populations obtained from different tissues exhibit significant differences in their proliferation, differentiation and molecular phenotype, which should be taken into consideration when planning their use in clinical protocols.Electronic supplementary materialThe online version of this article (doi:10.1007/s12015-012-9365-8) contains supplementary material, which is available to authorized users.
Highlights d Obesity accelerates differentiation potential of bone marrow stromal stem cells (BM-MSCs) d Obesity shifts molecular phenotype of BM-MSCs toward committed adipocytic progenitors d Obesity increases insulin signaling in BM-MSCs in contrast to adipose tissue-derived MSCs d IR+ and LEPR+ cells in obese BM-MSCs are associated with accelerated senescence
The molecular mechanisms promoting lineage-specific commitment of human mesenchymal (skeletal or stromal) stem cells (hMSCs) into adipocytes (ADs) are not fully understood. Thus, we performed global microRNA (miRNA) and gene expression profiling during adipocytic differentiation of hMSC, and utilized bioinformatics as well as functional and biochemical assays, and identified several novel miRNAs differentially expressed during adipogenesis. Among these, miR-320 family (miR-320a, 320b, 320c, 320d and 320e) were ~2.2–3.0-fold upregulated. Overexpression of miR-320c in hMSC enhanced adipocytic differentiation and accelerated formation of mature ADs in ex vivo cultures. Integrated analysis of bioinformatics and global gene expression profiling in miR-320c overexpressing cells and during adipocytic differentiation of hMSC identified several biologically relevant gene targets for miR-320c including RUNX2, MIB1 (mindbomb E3 ubiquitin protein ligase 1), PAX6 (paired box 6), YWHAH and ZWILCH. siRNA-mediated silencing of those genes enhanced adipocytic differentiation of hMSC, thus corroborating an important role for those genes in miR-320c-mediated adipogenesis. Concordant with that, lentiviral-mediated stable expression of miR-320c at physiological levels (~1.5-fold) promoted adipocytic and suppressed osteogenic differentiation of hMSC. Luciferase assay validated RUNX2 (Runt-related transcription factor 2) as a bona fide target for miR-320 family. Therefore, our data suggest miR-320 family as possible molecular switch promoting adipocytic differentiation of hMSC. Targeting miR-320 may have therapeutic potential in vivo through regulation of bone marrow adipogenesis.
BackgroundBetter understanding of the signaling pathways that regulate human bone marrow stromal stem cell (hBMSC) differentiation into bone-forming osteoblasts is crucial for their clinical use in regenerative medicine. Chemical biology approaches using small molecules targeting specific signaling pathways are increasingly employed to manipulate stem cell differentiation fate.MethodsWe employed alkaline phosphatase activity and staining assays to assess osteoblast differentiation and Alizarin R staining to assess mineralized matrix formation of cultured hBMSCs. Changes in gene expression were assessed using an Agilent microarray platform, and data normalization and bioinformatics were performed using GeneSpring software. For in vivo ectopic bone formation experiments, hMSCs were mixed with hydroxyapatite–tricalcium phosphate granules and implanted subcutaneously into the dorsal surface of 8-week-old female nude mice. Hematoxylin and eosin staining and Sirius Red staining were used to detect bone formation in vivo.ResultsWe identified several compounds which inhibited osteoblastic differentiation of hMSCs. In particular, we identified ruxolitinib (INCB018424) (3 μM), an inhibitor of JAK-STAT signaling that inhibited osteoblastic differentiation and matrix mineralization of hMSCs in vitro and reduced ectopic bone formation in vivo. Global gene expression profiling of ruxolitinib-treated cells identified 847 upregulated and 822 downregulated mRNA transcripts, compared to vehicle-treated control cells. Bioinformatic analysis revealed differential regulation of multiple genetic pathways, including TGFβ and insulin signaling, endochondral ossification, and focal adhesion.ConclusionsWe identified ruxolitinib as an important regulator of osteoblast differentiation of hMSCs. It is plausible that inhibition of osteoblast differentiation by ruxolitinib may represent a novel therapeutic strategy for the treatment of pathological conditions caused by accelerated osteoblast differentiation and mineralization.Electronic supplementary materialThe online version of this article (10.1186/s13287-018-1068-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.