Aims. We examine the idea that dynamical parameters can be estimated by identifying locations in the solar neighbourhood where velocity distributions recovered from test particle simulations and match the observed local distribution. Here, the dynamical influence of both the Galactic bar and the outer spiral pattern are taken into account. Methods. The Milky Way disc is stirred by analytical potentials that are chosen to represent the two perturbations, the ratio of pattern speeds of which is explored, rather than held constant. The velocity structure of the final configuration is presented as heliocentric velocity distributions at different locations. These model velocity distributions are compared to the observed distribution in terms of a goodness-of-fit parameter that has been formulated here. We monitor the spatial distribution of the maximal value of this goodnessof-fit parameter, for a given simulation, in order to constrain the solar position from this model. Efficiency of a model is based on a study of this distribution as well as on other independent dynamical considerations. Results. We reject the bar only and spiral only models and arrive at the following bar parameters from the bar+spiral simulations: bar pattern speed of 57.4 • ], where the error bands are ±1-σ. However, extracting information in this way is no longer viable when the dynamical influence of the spiral pattern does not succumb to that of the bar; an explanation for this is offered. Orbital analysis indicates that even though the basic bimodality in the local velocity distribution can be attributed to scattering off the Outer Lindblad Resonance of the bar, it is the interaction of irregular orbits and orbits of other resonant families, that is responsible for the other moving groups; it is realised that such interaction increases with the warmth of the background disk.
The dark matter halos in ΛCDM cosmological simulations are triaxial and highly flattened. In many cases, these triaxial equilibria are also tumbling slowly, typically about their short axes, with periods of order a Hubble time. Halos may therefore exert a slowly changing external torque on spiral galaxies that can affect their dynamical evolution in interesting ways. We examine the effect of the external torques exerted by a tumbling quadrupolar tidal field on the evolution of spiral galaxies using N-body simulations with realistic, disk galaxy models. We measure the amplitude of the external quadrupole moments of dark halos in cosmological simulations and use these to force disk galaxy models in a series of N-body experiments for a range of pattern speeds. We find that the torques are strong enough to induce long lived transient warps in disks similar to those observed in real spirals and also induce the bar instability at later times in some galaxy models that are otherwise stable for long periods of time in isolation. We also observe forced spiral structure near the edge of the disk where normally self-gravity is too weak to be responsible for such structure. This overlooked influence of dark halos may well be responsible for many of the peculiar aspects of disk galaxy dynamics.
We present the results of an X-ray mass analysis of the early-type galaxy NGC 4636, using Chandra data. We have compared the X-ray mass density profile with that derived from a dynamical analysis of the system's globular clusters (GCs). Given the observed interaction between the central active galactic nucleus and the X-ray emitting gas in NGC 4636, we would expect to see a discrepancy in the masses recovered by the two methods. Such a discrepancy exists within the central ∼10 kpc, which we interpret as the result of non-thermal pressure support or a local inflow. However, over the radial range ∼10-30 kpc, the mass profiles agree within the 1σ errors, indicating that even in this highly disturbed system, agreement can be sought at an acceptable level of significance over intermediate radii, with both methods also indicating the need for a dark matter halo. However, at radii larger than 30 kpc, the X-ray mass exceeds the dynamical mass, by a factor of 4-5 at the largest disagreement. A Fully Bayesian Significance Test finds no statistical reason to reject our assumption of velocity isotropy, and an analysis of X-ray mass profiles in different directions from the galaxy center suggests that local disturbances at large radius are not the cause of the discrepancy. We instead attribute the discrepancy to the paucity of GC kinematics at large radius, coupled with not knowing the overall state of the gas at the radius where we are reaching the group regime (>30 kpc), or a combination of the two.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.