Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.
The success of beneficial bacteria in improving the crop growth and yield depends on an adequate plant-bacteria interaction. In this work, the capability of Azospirillium brasilense Sp7, Pseudomonas putida KT2440, Acinetobacter sp. EMM02, and Sphingomonas sp. OF178A to interact with six maize varieties was evaluated by both single-bacterium application and consortium application. The bacterial consortium efficiently colonized the rhizosphere of the autochthonous yellow and H48 hybrid varieties. Bacterial colonization by the consortium was higher than under single-bacterium colonization. The two maize varieties assayed under greenhouse conditions showed increased plant growth compared to the control. The effect of consortium inoculation plus 50% fertilization was compared with the 100% nitrogen fertilization under field conditions using the autochthonous yellow maize. Inoculation with the consortium plus 50% urea produced a similar grain yield compared to 100% urea fertilization. However, a biomass decrease was observed in plants inoculated with the consortium plus 50% urea compared to the other treatments. Furthermore, the safety of these bacteria was evaluated in a rat model after oral administration. Animals did not present any negative effects, after bacterial administration. In conclusion, the bacterial consortium offers a safety alternative that can reduce chemical fertilization by half while producing the same crop yield obtained with 100% fertilization. Decreased chemical fertilization could avoid contamination and reduce the cost in agricultural practices.
It has been established that a decrease in the population of Gluconacetobacter diazotrophicus associated with sugarcane occurs after nitrogen fertilization. This fact could be due to a direct influence of NH(4)NO(3) on bacterial cells or to changes in plant physiology after fertilizer addition, affecting bacterial establishment. In this work, we observed that survival of G. diazotrophicus was directly influenced when 44.8mM of NH(4)NO(3) (640mgN/plant) was used for in vitro experiments. Furthermore, micropropagated sugarcane plantlets were inoculated with G. diazotrophicus and used for split root experiments, in which both ends of the system were fertilized with a basal level of NH(4)NO(3) (0.35mM; 10mgN/plant). Twenty days post inoculation (dpi) one half of the plants were fertilized with a high dose of NH(4)NO(3) (6.3mM; 180 mgN/plant) on one end of the system. This nitrogen level was lower than that directly affecting G. diazotrophicus cells; however, it caused a decrease in the bacterial population in comparison with control plants fertilized with basal nitrogen levels. The decrease in the population of G. diazotrophicus was higher in pots fertilized with a basal nitrogen level when compared with the corresponding end supplied with high levels of NH4NO3 (100dpi; 80 days post fertilization) of the same plant system. These observations suggest that the high nitrogen level added to the plants induce systemic physiological changes that affect the establishment of G. diazotrophicus.
Here we describe two methods for assessing the ability of one bacteria to inhibit the growth of another through the production of antimicrobial compounds. In the first assay, the double agar layer method, only the secreted substances but not the candidate antagonist bacteria interact with the sensitive microorganisms. In the second assay, the simultaneous inhibition method, both microorganisms are grown together allowing the competitive exclusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.